在三峡库区不同土壤类型(石灰土、紫色土)、坡度(5°、15°、25°)、种植模式(柑桔-牧草、蔬菜-马铃薯、玉米-小麦))上建立径流小区,旨在研究自然环境条件下土壤氮磷径流特点。结果表明不同条件下的土壤参数(pH、有机质、...在三峡库区不同土壤类型(石灰土、紫色土)、坡度(5°、15°、25°)、种植模式(柑桔-牧草、蔬菜-马铃薯、玉米-小麦))上建立径流小区,旨在研究自然环境条件下土壤氮磷径流特点。结果表明不同条件下的土壤参数(pH、有机质、全氮、碱解氮、全磷、有效磷)、径流水参数(pH、总氮、总磷)、流失泥沙参数(pH、有机质、全氮、碱解氮、全磷、有效磷)的含量差异较大,各参数间的相关性差异也较大。径流水的pH和总磷在石灰土和紫色土间达显著性差异,紫色土径流水总磷浓度的变化幅度和平均值均大于石灰土。紫色土径流水pH同总氮协同作用明显,同总磷拮抗作用明显。土壤有机质同径流水和流失泥沙中多个参数间有直线关系,控制土壤氮、磷输入能防止水体酸化的危险。氮径流率平均值为紫色土>石灰土,磷径流率平均值为石灰土>紫色土。土壤氮平均流失量在15°坡度时最大(1.428 kg hm-2),土壤磷平均流失量在25°坡度时最大(0.565kg hm-2)。4个月(5~8月)库区坡耕地土壤氮和磷平均流失量分别为1.038 kg hm-2、0.509 kg hm-2。展开更多
[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake an...[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.展开更多
Farmland nutrient loss has become one of the main reason causing agri- cultural nonpoint source pollution and water nitrogen, phosphorus eutrophication. Agricultural nonpoint source pollution monitoring techniques and...Farmland nutrient loss has become one of the main reason causing agri- cultural nonpoint source pollution and water nitrogen, phosphorus eutrophication. Agricultural nonpoint source pollution monitoring techniques and methods are very important in agricultural nonpoint source pollution control. This paper reviews the various monitoring techniques of agricultural non-point source pollution, including runoff pollutant monitoring, leaching pollutant monitoring and on-line monitoring. The runoff pollutant monitoring methods are mainly included artificial simulation of rain- fall runoff method, flow meter method, weir method and volumetric method. The leaching pollutant monitoring methods are mainly included leaching plate method, leaching gutter method, leakage pooling method, pumping filter pipe method and simulating soil column method. Although online monitoring of farmland nutrient loss still exists some technical bottlenecks and economic limitations, it is the future di- rection of development.展开更多
Agriculture is still the biggest contributor of non-point source (NPS) pollution to water bodies andrunoff discharges of nutrients and other chemicals are one of the most important pathways. This studywas conducted du...Agriculture is still the biggest contributor of non-point source (NPS) pollution to water bodies andrunoff discharges of nutrients and other chemicals are one of the most important pathways. This studywas conducted during 1998~1999 in a typical watershed with complex agriculture and forestry systems aswell as dotted farmer villages, in a transitional region between the mid- and northern subtropical zones ofChina. Continuous sampling of stream water was performed regularly at a weekly frequency, with additionalsampling after all major rainfall events. The discharges of N and P nutrients and suspended materials weremeasured and the total and area-averaged annual discharges of all components were calculated. The resultsshowed an uneven seasonal distribution of nutrient discharges with summer storms contributing most tothe total fluxes. This study demonstrated a high dependence of runoff volume on rainfall but the overallrunoff coefficients were dependent on land use type and watershed size. The area-averaged annual dischargesvaried greatly among the sub-watersheds with different sizes and land use structures. This is the first studyestimating the area-averaged annual discharges of N and P in the hilly areas of subtropical China, which were1.5 g m-2 a-1 and 0.1 g m-2 a-1, respectively, providing important reference values for the assessment ofregional agricultural non-point source pollution.展开更多
Fertilizers are heavily applied in orchards of the hilly and mountainous topography of South China and may increase nutrient loadings to receiving waters.A simple runoff collecting system was used to measure the effec...Fertilizers are heavily applied in orchards of the hilly and mountainous topography of South China and may increase nutrient loadings to receiving waters.A simple runoff collecting system was used to measure the effects of different fertilization treatments on total N and P concentrations of surface runoff in a Chinese chestnut (Castanea mollissima Blume) orchard in Dongyuan County,Guangdong Province,China.In such orchards,fertilizer was typically applied in two short furrows or pits on either side of each tree.Treatments included three application depths (surface,10cm and 20 cm),and three application rates (low,median and high).Results showed that 90.5% of the runoff water samples had a total N concentration higher than 0.35 mgL^(-1) and 54.2% had a total P concentration higher than 0.1 mgL^(-1).Fertilizer application at all depths and at all but the lowest rate significantly increased total N and P concentrations in runoff water.Fertilization with chemical compound fertilizer at a soil depth of 20cm produced significantly lower (P<0.05) total N concentration in runoff than both surface and 10-cm depth fertilization,and significantly lower (P<0.05) total P concentration in runoff than surface fertilization.Total N and P concentrations in runoff significantly increased with the application rate of organic fertilizers.With the exception of total P concentrations,which were not significantly different between the control and fertilization at a rate of 119 kg P ha-1 in organic form,all the other fertilization treatments produced significantly higher total N and total P concentrations in runoff than the control.A fertilization depth≥20cm and an application rate≤72 kg N ha^(-1) or 119 kg P ha^(-1) for compound organic fertilizer was suggested to substantially reduce N and P runoff losses from hillslope orchards and to protect receiving waters in South China.展开更多
文摘在三峡库区不同土壤类型(石灰土、紫色土)、坡度(5°、15°、25°)、种植模式(柑桔-牧草、蔬菜-马铃薯、玉米-小麦))上建立径流小区,旨在研究自然环境条件下土壤氮磷径流特点。结果表明不同条件下的土壤参数(pH、有机质、全氮、碱解氮、全磷、有效磷)、径流水参数(pH、总氮、总磷)、流失泥沙参数(pH、有机质、全氮、碱解氮、全磷、有效磷)的含量差异较大,各参数间的相关性差异也较大。径流水的pH和总磷在石灰土和紫色土间达显著性差异,紫色土径流水总磷浓度的变化幅度和平均值均大于石灰土。紫色土径流水pH同总氮协同作用明显,同总磷拮抗作用明显。土壤有机质同径流水和流失泥沙中多个参数间有直线关系,控制土壤氮、磷输入能防止水体酸化的危险。氮径流率平均值为紫色土>石灰土,磷径流率平均值为石灰土>紫色土。土壤氮平均流失量在15°坡度时最大(1.428 kg hm-2),土壤磷平均流失量在25°坡度时最大(0.565kg hm-2)。4个月(5~8月)库区坡耕地土壤氮和磷平均流失量分别为1.038 kg hm-2、0.509 kg hm-2。
基金Supported by Major Project of Control and Treatment on Domestic Water Pollution(2012ZX07103003)National 973 Project(2008CB418006)Science and Technology Foundation for Distinguished Young Schlors in Anhui Province(10040606Y30)~~
文摘[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201003014)Key Projects in the National Science&Technology Pillar Program(2012BAD15B03)~~
文摘Farmland nutrient loss has become one of the main reason causing agri- cultural nonpoint source pollution and water nitrogen, phosphorus eutrophication. Agricultural nonpoint source pollution monitoring techniques and methods are very important in agricultural nonpoint source pollution control. This paper reviews the various monitoring techniques of agricultural non-point source pollution, including runoff pollutant monitoring, leaching pollutant monitoring and on-line monitoring. The runoff pollutant monitoring methods are mainly included artificial simulation of rain- fall runoff method, flow meter method, weir method and volumetric method. The leaching pollutant monitoring methods are mainly included leaching plate method, leaching gutter method, leakage pooling method, pumping filter pipe method and simulating soil column method. Although online monitoring of farmland nutrient loss still exists some technical bottlenecks and economic limitations, it is the future di- rection of development.
基金Project supported by the International Foundation of Science(No.C/2661-1)the National Key Basic Research Support Foundation of China(No.G1999011809).
文摘Agriculture is still the biggest contributor of non-point source (NPS) pollution to water bodies andrunoff discharges of nutrients and other chemicals are one of the most important pathways. This studywas conducted during 1998~1999 in a typical watershed with complex agriculture and forestry systems aswell as dotted farmer villages, in a transitional region between the mid- and northern subtropical zones ofChina. Continuous sampling of stream water was performed regularly at a weekly frequency, with additionalsampling after all major rainfall events. The discharges of N and P nutrients and suspended materials weremeasured and the total and area-averaged annual discharges of all components were calculated. The resultsshowed an uneven seasonal distribution of nutrient discharges with summer storms contributing most tothe total fluxes. This study demonstrated a high dependence of runoff volume on rainfall but the overallrunoff coefficients were dependent on land use type and watershed size. The area-averaged annual dischargesvaried greatly among the sub-watersheds with different sizes and land use structures. This is the first studyestimating the area-averaged annual discharges of N and P in the hilly areas of subtropical China, which were1.5 g m-2 a-1 and 0.1 g m-2 a-1, respectively, providing important reference values for the assessment ofregional agricultural non-point source pollution.
基金Project supported by the Science and Technology Department of Guangdong Province,China (No.2004B33301007)the Rockefeller Brothers Fund,America.
文摘Fertilizers are heavily applied in orchards of the hilly and mountainous topography of South China and may increase nutrient loadings to receiving waters.A simple runoff collecting system was used to measure the effects of different fertilization treatments on total N and P concentrations of surface runoff in a Chinese chestnut (Castanea mollissima Blume) orchard in Dongyuan County,Guangdong Province,China.In such orchards,fertilizer was typically applied in two short furrows or pits on either side of each tree.Treatments included three application depths (surface,10cm and 20 cm),and three application rates (low,median and high).Results showed that 90.5% of the runoff water samples had a total N concentration higher than 0.35 mgL^(-1) and 54.2% had a total P concentration higher than 0.1 mgL^(-1).Fertilizer application at all depths and at all but the lowest rate significantly increased total N and P concentrations in runoff water.Fertilization with chemical compound fertilizer at a soil depth of 20cm produced significantly lower (P<0.05) total N concentration in runoff than both surface and 10-cm depth fertilization,and significantly lower (P<0.05) total P concentration in runoff than surface fertilization.Total N and P concentrations in runoff significantly increased with the application rate of organic fertilizers.With the exception of total P concentrations,which were not significantly different between the control and fertilization at a rate of 119 kg P ha-1 in organic form,all the other fertilization treatments produced significantly higher total N and total P concentrations in runoff than the control.A fertilization depth≥20cm and an application rate≤72 kg N ha^(-1) or 119 kg P ha^(-1) for compound organic fertilizer was suggested to substantially reduce N and P runoff losses from hillslope orchards and to protect receiving waters in South China.