[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake an...[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.展开更多
Agriculture is still the biggest contributor of non-point source (NPS) pollution to water bodies andrunoff discharges of nutrients and other chemicals are one of the most important pathways. This studywas conducted du...Agriculture is still the biggest contributor of non-point source (NPS) pollution to water bodies andrunoff discharges of nutrients and other chemicals are one of the most important pathways. This studywas conducted during 1998~1999 in a typical watershed with complex agriculture and forestry systems aswell as dotted farmer villages, in a transitional region between the mid- and northern subtropical zones ofChina. Continuous sampling of stream water was performed regularly at a weekly frequency, with additionalsampling after all major rainfall events. The discharges of N and P nutrients and suspended materials weremeasured and the total and area-averaged annual discharges of all components were calculated. The resultsshowed an uneven seasonal distribution of nutrient discharges with summer storms contributing most tothe total fluxes. This study demonstrated a high dependence of runoff volume on rainfall but the overallrunoff coefficients were dependent on land use type and watershed size. The area-averaged annual dischargesvaried greatly among the sub-watersheds with different sizes and land use structures. This is the first studyestimating the area-averaged annual discharges of N and P in the hilly areas of subtropical China, which were1.5 g m-2 a-1 and 0.1 g m-2 a-1, respectively, providing important reference values for the assessment ofregional agricultural non-point source pollution.展开更多
基金Supported by Major Project of Control and Treatment on Domestic Water Pollution(2012ZX07103003)National 973 Project(2008CB418006)Science and Technology Foundation for Distinguished Young Schlors in Anhui Province(10040606Y30)~~
文摘[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.
基金Project supported by the International Foundation of Science(No.C/2661-1)the National Key Basic Research Support Foundation of China(No.G1999011809).
文摘Agriculture is still the biggest contributor of non-point source (NPS) pollution to water bodies andrunoff discharges of nutrients and other chemicals are one of the most important pathways. This studywas conducted during 1998~1999 in a typical watershed with complex agriculture and forestry systems aswell as dotted farmer villages, in a transitional region between the mid- and northern subtropical zones ofChina. Continuous sampling of stream water was performed regularly at a weekly frequency, with additionalsampling after all major rainfall events. The discharges of N and P nutrients and suspended materials weremeasured and the total and area-averaged annual discharges of all components were calculated. The resultsshowed an uneven seasonal distribution of nutrient discharges with summer storms contributing most tothe total fluxes. This study demonstrated a high dependence of runoff volume on rainfall but the overallrunoff coefficients were dependent on land use type and watershed size. The area-averaged annual dischargesvaried greatly among the sub-watersheds with different sizes and land use structures. This is the first studyestimating the area-averaged annual discharges of N and P in the hilly areas of subtropical China, which were1.5 g m-2 a-1 and 0.1 g m-2 a-1, respectively, providing important reference values for the assessment ofregional agricultural non-point source pollution.