为探讨N添加对墨西哥柏人工林土壤、叶片碳氮磷含量及其生态化学计量特征变化的影响,共设置F0,F1(24kg hm-2a-1),F2(48 kg hm-2a-1),F3(72 kg hm-2a-1),F4(96 kg hm-2a-1),F5(120 kg hm-2a-1) 6个不同施N量处理。结果表明:(1)随施N量的...为探讨N添加对墨西哥柏人工林土壤、叶片碳氮磷含量及其生态化学计量特征变化的影响,共设置F0,F1(24kg hm-2a-1),F2(48 kg hm-2a-1),F3(72 kg hm-2a-1),F4(96 kg hm-2a-1),F5(120 kg hm-2a-1) 6个不同施N量处理。结果表明:(1)随施N量的增加土壤有机碳,全氮,全磷含量呈先升高后降低的趋势,并在F3样地取得最大值,分别是2. 50%,0. 22%,0. 13%。土壤C/N值随施肥量的增加而显著增加。但土壤N/P,C/P值随施肥量的增加呈降低-升高的趋势,在F2样地出现最低值,分别是0. 92,11. 01。(2)叶片CNP含量未受到N添加的显著影响,叶片C、N含量在F3样地取得最大值,分别为47. 89%,1. 50%,叶片P含量在F2样地取得最大值,为0. 24%。同样N添加对叶片C/N,C/P值并没有产生显著影响,(3)根据聚类分析可以发现,N添加对土壤、叶片碳氮磷含量及化学计量比的影响可以分为3组,其中F2可作为盱眙墨西哥柏人工林氮添加的参考。根据因子分析可以发现,土壤、叶片CNP化学计量比对N添加的响应比较灵敏。展开更多
Stoichiometry has long been addressed in the studies of ecosystem ecology, but it was almost ignored for a long time. Until recently, ecologists have become aware that stoichiometry could provide a new tool to study e...Stoichiometry has long been addressed in the studies of ecosystem ecology, but it was almost ignored for a long time. Until recently, ecologists have become aware that stoichiometry could provide a new tool to study ecology from genes to the biosphere. Among this trend, N:P stoichiometry is used actively in ecological interactions since nitrogen (N) and phosphorus (P) are the two most important elements in most ecosystems. This article reviews the application of N:P stoichiometry to the studies of ecological problems at different levels, including ecosystem, community and species. Meanwhile, we also provide the cellular basis of N:P stoichiometry, identify the shortages in the use of N:P stoichiometry theory, and put forward some perspectives for future research to be conducted.展开更多
Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994(12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation...Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994(12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation of the ambient concentration Si:DIN and Si:16P ratios and the seasonal variation of Jiaozhou Bay Si:DIN and Si:16P ratios showing that the Si:DIN ratios were < 1 throughout the year in Jiaozhou Bay; and that the Si:16P ratios were < 1 throughout Jiaozhou Bay in spring, autumn and winter. The results proved that silicate limited phytoplankton growth in spring, autumn and winter in Jiaozhou Bay. Analysis of the Si:DIN and Si:P ratios showed that the nutrient Si has been limiting the growth of phytoplankton throughout the year in some Jiaozhou Bay waters; and that the silicate deficiency changed the phytoplankton assemblage structure. Analysis of discontinuous 1962 to 1998 nutrient data showed that there was no N or P limitation of phytoplankton growth in that period. The authors consider that the annual cyclic change of silicate limits phytoplankton growth in spring, autumn and winter every year in Jiaozhou Bay; and that in many Jiaozhou Bay waters where the phytoplankton as the predominant species need a great amount of silicate, analysis of the nutrients N or P limitation of phytoplankton growth relying only on the N and P nutrients and DIN:P ratio could yield inaccurate conclusions. The results obtained by applying the rules of absolute and relative limitation fully support this view. The authors consider that the main function of nutrient silicon is to regulate and control the mechanism of the phytoplankton growth process in the ecological system in estuaries, bays and the sea. The authors consider that according to the evolution theory of Darwin, continuous environmental pressure gradually changes the phytoplankton assemblage's structure and the physiology of diatoms. Diatoms requiring a great deal of silicon either constantly decrease or reduce their requirement for silicon. This will cause a series of huge changes in the ecosystem so that the whole ecosystem requires continuous renewal, change and balancing. Human beings have to reduce marine pollution and enhance the capacity of continental sources to transport silicon to sustain the continuity and stability in the marine ecosystem.nt展开更多
Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ...Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.展开更多
The responses of five inter-specific lowland rice cultivars (NERICA-L-19, NERICA-L-20, NERICA-L-41, NERICA-L-42, and NERICA-L-60) and four improved Oryza sativa cultivars (FKR 19, BW 348-1, WITA 4, and SIPI 6923033...The responses of five inter-specific lowland rice cultivars (NERICA-L-19, NERICA-L-20, NERICA-L-41, NERICA-L-42, and NERICA-L-60) and four improved Oryza sativa cultivars (FKR 19, BW 348-1, WITA 4, and SIPI 6923033) to levels of phosphorus and nitrogen fertilization were compared on a Typic Natrustalfat Kadawa in the Nigerian Sudan Savanna in 2006 and 2007 The responses of the NERICA-L eultivars to N and P fertilization were similar to the O. sativa cultivars. In a dry year (2007), the NERICA-L cultivars gave higher yields than O. sativa cultivars. Phosphorus level did not significantly affect crop physiology, yield, and yield components of all the cultivars. Pooled across cultivars, N and P levels, days to panicle initiation, mid-flowering and maturity were, respectively delayed by 17.0, 15.6 and 6.4 days in 2007 compared to 2006. NERICA-L-42 and NERICA-L-41 were the most stable, exhibiting the least difference in duration to maturity between the two years (3.5 and 4.4 days, respectively), and could therefore be more adapted to rain-fed environments prone to frequent droughts. Increasing N levels from 0 to 120 kg hal produced yield increments of 62.9 and 37.2% in 2006 and 2007, respectively. Cultivars FKR 19 and WITA 4 gave higher yields in 2006 (3940 and 3542 kg ha^-1, respectively), while in 2007, NERICA-L-42, NERICA-L^-19 and NERICA-L-20 ranked among the highest in grain yield (3935, 3807 and 3726 kg hal, respectively) and could be recommended to resource-poor farmers. a展开更多
Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil pro...Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil productivity and fertilizer applications affect crop yields. A long-term experiment with a winter wheat-summer maize rotation was established in 1989 in a field of the Fengqiu State Key Agro-Ecological Experimental Station, a region typical of the North China Plain, including seven treatments: 1) a balanced application of NPK chemical fertilizers (NPK); 2) application of organic fertilizer (OM); 3) application of 50% organic fertilizer and 50% NPK chemical fertilizers (1/2OMN); 4) application of NP chemical fertilizers (NP); 5) application of PK chemical fertilizer (PK); 6) application of NK chemical fertilizers (NK); and 7) unfertilized control (CK). To investigate the effects of fertilization practices on soil productivity, further pot tests were conducted in 2007-2008 using soil samples from the different fertilization treatments of the long-term field experiment. The soil sample of each treatment of the long-term experiment was divided into three pots to grow wheat: with no fertilization (Potunf), with balanced NPK fertilization (POtNPK), and with the same fertilizer(s) of the long-term field experiment (Potori). The fertilized soils of the field experiment used in all the pot tests showed a higher wheat grain yield and higher nutrient uptake levels than the unfertilized soil. Soil productivity of the treatments of the field experiment after 18 years of continuous fertilizer applications were ranked in the order of OM 〉 1/2OMN 〉 NPK 〉 NP 〉 PK 〉 NK 〉 CK. The contribution of soil productivity of the different treatments of the field experiment to the wheat grain yield of Potori was 36.0%-76.7%, with the PK and NK treatments being higher than the OM, 1/2OMN, NPK, and NP treatments since the soil in this area was deficient in N and P and rich in K. Wheat grain yields of PotNPK were higher than those of Potori and Potunf. The N, P, and K use efficiencies were higher in POtNPK than Potori and significantly positively correlated with wheat grain yield. Soil organic matter could be a better predictor of soil productivity because it correlated more strongly than other nutrients with the wheat grain yield of Potuf. Wheat yields of POtNPK showed a similar trend to those of Potunf, indicating that soil productivity improvement was essential for a further increase in crop yield. The long-term applications of both organic and chemical fertilizers were capable of increasing soil productivity on the North China Plain, but the former was more effective than the latter. The balanced application of NPK chemical fertilizers not only increased soil productivity, but also largely increased crop yields, especially in soils with lower productivity. Thus, such an approach should be a feasible practice for the sustainable use of agricultural soils on the North China Plain, particularly when taking into account crop yields, labor costs, and the limited availability of organic fertilizers.展开更多
Variations in microbial biomass C (MB-C),N (MB-N) and P (MB-P) along a gradient of different dominant vegeta- tion covers (natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems) in dry tropi...Variations in microbial biomass C (MB-C),N (MB-N) and P (MB-P) along a gradient of different dominant vegeta- tion covers (natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems) in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22 to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g ?1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period (summer season) and the minimum in wet period (rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant (P < 0.001) among sites and seasons.The MB-C (P < 0.0001),MB-N (P < 0.001) and MB-P (P < 0.0001) were positively correlated with organic C,while the relationship between soil moisture and MB-C,MB-N and MB-P (P < 0.001,P < 0.01 and P < 0.0001,respectively) was negative.The decreasing order of MB-C,MB-N and MB-P along study ecosystems was natural forest > mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices (conversion of forest into savanna and grassland) caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites (grassland and savanna) compared to undisturbed forest ecosystems.展开更多
文摘为探讨N添加对墨西哥柏人工林土壤、叶片碳氮磷含量及其生态化学计量特征变化的影响,共设置F0,F1(24kg hm-2a-1),F2(48 kg hm-2a-1),F3(72 kg hm-2a-1),F4(96 kg hm-2a-1),F5(120 kg hm-2a-1) 6个不同施N量处理。结果表明:(1)随施N量的增加土壤有机碳,全氮,全磷含量呈先升高后降低的趋势,并在F3样地取得最大值,分别是2. 50%,0. 22%,0. 13%。土壤C/N值随施肥量的增加而显著增加。但土壤N/P,C/P值随施肥量的增加呈降低-升高的趋势,在F2样地出现最低值,分别是0. 92,11. 01。(2)叶片CNP含量未受到N添加的显著影响,叶片C、N含量在F3样地取得最大值,分别为47. 89%,1. 50%,叶片P含量在F2样地取得最大值,为0. 24%。同样N添加对叶片C/N,C/P值并没有产生显著影响,(3)根据聚类分析可以发现,N添加对土壤、叶片碳氮磷含量及化学计量比的影响可以分为3组,其中F2可作为盱眙墨西哥柏人工林氮添加的参考。根据因子分析可以发现,土壤、叶片CNP化学计量比对N添加的响应比较灵敏。
文摘Stoichiometry has long been addressed in the studies of ecosystem ecology, but it was almost ignored for a long time. Until recently, ecologists have become aware that stoichiometry could provide a new tool to study ecology from genes to the biosphere. Among this trend, N:P stoichiometry is used actively in ecological interactions since nitrogen (N) and phosphorus (P) are the two most important elements in most ecosystems. This article reviews the application of N:P stoichiometry to the studies of ecological problems at different levels, including ecosystem, community and species. Meanwhile, we also provide the cellular basis of N:P stoichiometry, identify the shortages in the use of N:P stoichiometry theory, and put forward some perspectives for future research to be conducted.
基金funded by the NSFC(No.40036010)subsidized by Special Funds from the National Key BaBic Research Program of P.R.China(G19990437)+2 种基金the Postdoctoral Foundation of Ocean University of Qingdaothe Director’s Foundation of the Beihai Monitoring Center of the State Oceanic Administrationthe Foundation of Shanghai Fisheries University
文摘Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994(12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation of the ambient concentration Si:DIN and Si:16P ratios and the seasonal variation of Jiaozhou Bay Si:DIN and Si:16P ratios showing that the Si:DIN ratios were < 1 throughout the year in Jiaozhou Bay; and that the Si:16P ratios were < 1 throughout Jiaozhou Bay in spring, autumn and winter. The results proved that silicate limited phytoplankton growth in spring, autumn and winter in Jiaozhou Bay. Analysis of the Si:DIN and Si:P ratios showed that the nutrient Si has been limiting the growth of phytoplankton throughout the year in some Jiaozhou Bay waters; and that the silicate deficiency changed the phytoplankton assemblage structure. Analysis of discontinuous 1962 to 1998 nutrient data showed that there was no N or P limitation of phytoplankton growth in that period. The authors consider that the annual cyclic change of silicate limits phytoplankton growth in spring, autumn and winter every year in Jiaozhou Bay; and that in many Jiaozhou Bay waters where the phytoplankton as the predominant species need a great amount of silicate, analysis of the nutrients N or P limitation of phytoplankton growth relying only on the N and P nutrients and DIN:P ratio could yield inaccurate conclusions. The results obtained by applying the rules of absolute and relative limitation fully support this view. The authors consider that the main function of nutrient silicon is to regulate and control the mechanism of the phytoplankton growth process in the ecological system in estuaries, bays and the sea. The authors consider that according to the evolution theory of Darwin, continuous environmental pressure gradually changes the phytoplankton assemblage's structure and the physiology of diatoms. Diatoms requiring a great deal of silicon either constantly decrease or reduce their requirement for silicon. This will cause a series of huge changes in the ecosystem so that the whole ecosystem requires continuous renewal, change and balancing. Human beings have to reduce marine pollution and enhance the capacity of continental sources to transport silicon to sustain the continuity and stability in the marine ecosystem.nt
基金support from the National Natural Science Foundation of China(41522207,41571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.
文摘The responses of five inter-specific lowland rice cultivars (NERICA-L-19, NERICA-L-20, NERICA-L-41, NERICA-L-42, and NERICA-L-60) and four improved Oryza sativa cultivars (FKR 19, BW 348-1, WITA 4, and SIPI 6923033) to levels of phosphorus and nitrogen fertilization were compared on a Typic Natrustalfat Kadawa in the Nigerian Sudan Savanna in 2006 and 2007 The responses of the NERICA-L eultivars to N and P fertilization were similar to the O. sativa cultivars. In a dry year (2007), the NERICA-L cultivars gave higher yields than O. sativa cultivars. Phosphorus level did not significantly affect crop physiology, yield, and yield components of all the cultivars. Pooled across cultivars, N and P levels, days to panicle initiation, mid-flowering and maturity were, respectively delayed by 17.0, 15.6 and 6.4 days in 2007 compared to 2006. NERICA-L-42 and NERICA-L-41 were the most stable, exhibiting the least difference in duration to maturity between the two years (3.5 and 4.4 days, respectively), and could therefore be more adapted to rain-fed environments prone to frequent droughts. Increasing N levels from 0 to 120 kg hal produced yield increments of 62.9 and 37.2% in 2006 and 2007, respectively. Cultivars FKR 19 and WITA 4 gave higher yields in 2006 (3940 and 3542 kg ha^-1, respectively), while in 2007, NERICA-L-42, NERICA-L^-19 and NERICA-L-20 ranked among the highest in grain yield (3935, 3807 and 3726 kg hal, respectively) and could be recommended to resource-poor farmers. a
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX2-YW-312 and KZCX2-YW-406-2)the National Natural Science Foundation of China (No. 40621001)
文摘Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil productivity and fertilizer applications affect crop yields. A long-term experiment with a winter wheat-summer maize rotation was established in 1989 in a field of the Fengqiu State Key Agro-Ecological Experimental Station, a region typical of the North China Plain, including seven treatments: 1) a balanced application of NPK chemical fertilizers (NPK); 2) application of organic fertilizer (OM); 3) application of 50% organic fertilizer and 50% NPK chemical fertilizers (1/2OMN); 4) application of NP chemical fertilizers (NP); 5) application of PK chemical fertilizer (PK); 6) application of NK chemical fertilizers (NK); and 7) unfertilized control (CK). To investigate the effects of fertilization practices on soil productivity, further pot tests were conducted in 2007-2008 using soil samples from the different fertilization treatments of the long-term field experiment. The soil sample of each treatment of the long-term experiment was divided into three pots to grow wheat: with no fertilization (Potunf), with balanced NPK fertilization (POtNPK), and with the same fertilizer(s) of the long-term field experiment (Potori). The fertilized soils of the field experiment used in all the pot tests showed a higher wheat grain yield and higher nutrient uptake levels than the unfertilized soil. Soil productivity of the treatments of the field experiment after 18 years of continuous fertilizer applications were ranked in the order of OM 〉 1/2OMN 〉 NPK 〉 NP 〉 PK 〉 NK 〉 CK. The contribution of soil productivity of the different treatments of the field experiment to the wheat grain yield of Potori was 36.0%-76.7%, with the PK and NK treatments being higher than the OM, 1/2OMN, NPK, and NP treatments since the soil in this area was deficient in N and P and rich in K. Wheat grain yields of PotNPK were higher than those of Potori and Potunf. The N, P, and K use efficiencies were higher in POtNPK than Potori and significantly positively correlated with wheat grain yield. Soil organic matter could be a better predictor of soil productivity because it correlated more strongly than other nutrients with the wheat grain yield of Potuf. Wheat yields of POtNPK showed a similar trend to those of Potunf, indicating that soil productivity improvement was essential for a further increase in crop yield. The long-term applications of both organic and chemical fertilizers were capable of increasing soil productivity on the North China Plain, but the former was more effective than the latter. The balanced application of NPK chemical fertilizers not only increased soil productivity, but also largely increased crop yields, especially in soils with lower productivity. Thus, such an approach should be a feasible practice for the sustainable use of agricultural soils on the North China Plain, particularly when taking into account crop yields, labor costs, and the limited availability of organic fertilizers.
基金Supported by the Scientist’s Pool Scheme of the Council of Scientific and Industrial Research, New Delhi, Government of India (No. 13(8243)/Pool-2008)
文摘Variations in microbial biomass C (MB-C),N (MB-N) and P (MB-P) along a gradient of different dominant vegeta- tion covers (natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems) in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22 to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g ?1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period (summer season) and the minimum in wet period (rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant (P < 0.001) among sites and seasons.The MB-C (P < 0.0001),MB-N (P < 0.001) and MB-P (P < 0.0001) were positively correlated with organic C,while the relationship between soil moisture and MB-C,MB-N and MB-P (P < 0.001,P < 0.01 and P < 0.0001,respectively) was negative.The decreasing order of MB-C,MB-N and MB-P along study ecosystems was natural forest > mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices (conversion of forest into savanna and grassland) caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites (grassland and savanna) compared to undisturbed forest ecosystems.