Nitrogen cycling in forest ecosystems has been one of the focuses widely concerned by ecologists in the past decades. Well understanding the pattern of N cycling and N availability in different forest ecosystems all a...Nitrogen cycling in forest ecosystems has been one of the focuses widely concerned by ecologists in the past decades. Well understanding the pattern of N cycling and N availability in different forest ecosystems all around the world will be of theoretically and practically great significance for studying and resolving the problems of global climate change and biodiversity loss.This paper reviewed the biological and non-biological factors affecting soil N availability in forest ecosystems,and briefly discussed the problems in studying N availability.展开更多
Net N mineralization and nitrification were determined using the closed_top PVC tube in situ incubation method in a subalpine meadow (Saussurea iodostegia Hance + Carex capillaris L.)→shagspine peashrub (Caragana jub...Net N mineralization and nitrification were determined using the closed_top PVC tube in situ incubation method in a subalpine meadow (Saussurea iodostegia Hance + Carex capillaris L.)→shagspine peashrub (Caragana jubata (Pall.) Poir) shrubland→ribbed birch (Betula costata Trautv.) successional sere. The ability of the three communities to supply available N was comparatively studied. The results showed that there were apparent seasonal changes in the inorganic N pools (including NH + 4_N and NO - 3_N) and net N mineralization and nitrification rates in the three sites. There were generally no significant differences in the inorganic N pools among sampling events. But the NH + 4_N concentration in both birch (P<0.01) and meadow (P<0.01) sites was significantly higher than that in peashrub site in June 1996, and the NO - 3_N concentration in peashrub site was significantly higher than that of meadow site (P<0.05) in August 1996. The annual net N mineralization and nitrification rates in peashrub site (16.01 kg·hm -2 ) were higher than in birch (12.05 kg·hm -2 ) and meadow sites (1.64 kg·hm -2 ). The annual net nitrification rate in peashrub site (11.37 kg·hm -2 ) was higher than in meadow site (10.90 kg·hm -2 ) and much lower than in birch site (14.36 kg·hm -2 ). We conclude that the ability of peashrub shrubland soil to supply available N for plant uptake and the ability to prevent available N from denitrification and leaching were higher than that of the other two sites. The leguminous peashrub might play a potential role in supplying more N, which in turn facilitate the invasion of birch saplings during the successional processes.展开更多
Nitrogen use efficiency (NUE) was very low in China and a loss of as much as 7070 of the applied nitrogen fertilizers was reported in high-yielding rice fields. In order to investigate the molecular basis of high-af...Nitrogen use efficiency (NUE) was very low in China and a loss of as much as 7070 of the applied nitrogen fertilizers was reported in high-yielding rice fields. In order to investigate the molecular basis of high-affinity ammonium transport or uptake into rice (Oryza sativa L.), we analyzed the expression profiles of nine ammonium transporters (AMT), three each of OsAMT1, OsAMT2 and OsAMT3, at two different N requirement stages (young seedling stage and tillering stage) of rice growth as well as the changes in these expression patterns according to external N status using real-time reverse transcription polymerase chain reaction (RT-PCR). The results suggested that the nine OsAMT genes were expressed in different organs of rice plants, including mature roots, new roots, stems, old leaves and new leaves and that the expression patterns were organ specific and independent of the positions of the corresponding proteins in the phylogenetic tree. OsAMT1;1, 3;2 and 3;3 were expressed in the roots and shoots, primarily old leaves, OsAMT1;2 and 1;3 mainly in the roots, and OsAMT2;1, 2;2, 2;3 and 3;1 mainly in the shoots, primarily in new leaves, and relatively more in the stems than other genes. The expression patterns at the two different N requirement stages were the same; however, at the tillering stage with greater N requirements, the OsAMTs transcript levels were greater than those at the young seedling stage with low N requirements. N starvation for 48 h up-regulated OsAMT1;1, 1;2, 3;1, 3;2, 3;3 and down-regulated OsAMT1;3 mRNA abundance. Following N starvation, NH4+ and NH4NO3 re-supply down-regulated OsAMT1;2 and 3;3 and up-regulated OsAMT1;3, whereas NO3 re-supply down-regulated OsAMT1;1 and 1;2. These suggested that the organ-specific expression pattern of OsAMT could be regulated by N requirement and external N status.展开更多
Ammonium(NH+4) is the main nitrogen(N) form for rice crops, while NH+4near the root surface can be oxidized to nitrate(NO-3)by NH+4-oxidizing bacteria. Nitrate can be accumulated within rice tissues and reused when N ...Ammonium(NH+4) is the main nitrogen(N) form for rice crops, while NH+4near the root surface can be oxidized to nitrate(NO-3)by NH+4-oxidizing bacteria. Nitrate can be accumulated within rice tissues and reused when N supply is insufficient. We compared the remobilization of NO-3stored in the tissue and vacuolar between two rice(Oryza sativa L.) cultivars, Yangdao 6(YD6, indica)with a high N use efficiency(NUE) and Wuyujing 3(WYJ3, japonica) with a low NUE and measured the uptake of NO-3, expression of nitrate reductase(NR), NO-3transporter genes(NRTs), and NR activity after 4 d of N starvation following 7-d cultivation in a solution containing 2.86 mmol L-1NO-3. The results showed that both tissue NO-3concentration and vacuolar NO-3activity were higher in YD6 than WYJ3 under N starvation. YD6 showed a 2- to 3-fold higher expression of OsNRT2.1 in roots on the 1st and 4th day of N starvation and had significantly higher values of NO-3uptake(maximum uptake velocity, Vmax) than the cultivar WYJ3.Furthermore, YD6 had significantly higher leaf and root maximum NR activity(NRAmax) and actual NR activity(NRAact) as well as stronger root expression of the two NR genes after the 1st day of N starvation. There were no significant differences in NRAmax and NRAact between the two rice cultivars on the 4th day of N starvation. The results suggested that YD6 had stronger NRA under N starvation, which might result in better NO-3re-utilization from the vacuole, and higher capacity for NO-3uptake and use, potentially explaining the higher NUE of YD6 compared with WYJ3.展开更多
Aims Soil inorganic nitrogen(N)has long been recognized to play an important role in plant invasions.Whilst comparing the N use strategies of multiple invasive versus native plant congeners along an entire N gradient ...Aims Soil inorganic nitrogen(N)has long been recognized to play an important role in plant invasions.Whilst comparing the N use strategies of multiple invasive versus native plant congeners along an entire N gradient is key to understanding plant invasion success,there are few related studies.Methods We conducted a potted experiment with six invasive and native congeneric pairs,which were subjected to 11 nitrate/ammonium(NO3−/NH4+)ratios(i.e.100%NO3−at one end and 100%NH4+at the other end),each with low-and high-N levels.Each species–N combination was replicated eight times,and thus there were 2112 pots in total.We measured the following traits:the total biomass,growth advantage,biomass allocation,leaf chlorophyll content and low-N tolerance.Important Findings Invasive and native congeners grew well at any NO3−/NH4+ratios,and their responses of growth,allocation and tolerance were approximately parallel along the 11 NO3−/NH4+ratios across two N levels.Plant invaders grew larger and had greater chlorophyll contents,higher root biomass allocation and stronger low-N tolerance than their congeneric natives.These findings suggest that invasive and native plant congeners may utilize similar inorganic N forms(i.e.NO3−and NH4+)across an entire N composition gradient and that higher N use efficiencies could favor alien plants to invade new plant communities where congeneric natives are dominants.展开更多
文摘Nitrogen cycling in forest ecosystems has been one of the focuses widely concerned by ecologists in the past decades. Well understanding the pattern of N cycling and N availability in different forest ecosystems all around the world will be of theoretically and practically great significance for studying and resolving the problems of global climate change and biodiversity loss.This paper reviewed the biological and non-biological factors affecting soil N availability in forest ecosystems,and briefly discussed the problems in studying N availability.
文摘Net N mineralization and nitrification were determined using the closed_top PVC tube in situ incubation method in a subalpine meadow (Saussurea iodostegia Hance + Carex capillaris L.)→shagspine peashrub (Caragana jubata (Pall.) Poir) shrubland→ribbed birch (Betula costata Trautv.) successional sere. The ability of the three communities to supply available N was comparatively studied. The results showed that there were apparent seasonal changes in the inorganic N pools (including NH + 4_N and NO - 3_N) and net N mineralization and nitrification rates in the three sites. There were generally no significant differences in the inorganic N pools among sampling events. But the NH + 4_N concentration in both birch (P<0.01) and meadow (P<0.01) sites was significantly higher than that in peashrub site in June 1996, and the NO - 3_N concentration in peashrub site was significantly higher than that of meadow site (P<0.05) in August 1996. The annual net N mineralization and nitrification rates in peashrub site (16.01 kg·hm -2 ) were higher than in birch (12.05 kg·hm -2 ) and meadow sites (1.64 kg·hm -2 ). The annual net nitrification rate in peashrub site (11.37 kg·hm -2 ) was higher than in meadow site (10.90 kg·hm -2 ) and much lower than in birch site (14.36 kg·hm -2 ). We conclude that the ability of peashrub shrubland soil to supply available N for plant uptake and the ability to prevent available N from denitrification and leaching were higher than that of the other two sites. The leguminous peashrub might play a potential role in supplying more N, which in turn facilitate the invasion of birch saplings during the successional processes.
基金Supported by the National Natural Science Foundation of China (No. 30800702)the National Basic Research Program of China (No. 2007CB109303)the National Key Technology R&D Program of China (No. 2012BAD15B03)
文摘Nitrogen use efficiency (NUE) was very low in China and a loss of as much as 7070 of the applied nitrogen fertilizers was reported in high-yielding rice fields. In order to investigate the molecular basis of high-affinity ammonium transport or uptake into rice (Oryza sativa L.), we analyzed the expression profiles of nine ammonium transporters (AMT), three each of OsAMT1, OsAMT2 and OsAMT3, at two different N requirement stages (young seedling stage and tillering stage) of rice growth as well as the changes in these expression patterns according to external N status using real-time reverse transcription polymerase chain reaction (RT-PCR). The results suggested that the nine OsAMT genes were expressed in different organs of rice plants, including mature roots, new roots, stems, old leaves and new leaves and that the expression patterns were organ specific and independent of the positions of the corresponding proteins in the phylogenetic tree. OsAMT1;1, 3;2 and 3;3 were expressed in the roots and shoots, primarily old leaves, OsAMT1;2 and 1;3 mainly in the roots, and OsAMT2;1, 2;2, 2;3 and 3;1 mainly in the shoots, primarily in new leaves, and relatively more in the stems than other genes. The expression patterns at the two different N requirement stages were the same; however, at the tillering stage with greater N requirements, the OsAMTs transcript levels were greater than those at the young seedling stage with low N requirements. N starvation for 48 h up-regulated OsAMT1;1, 1;2, 3;1, 3;2, 3;3 and down-regulated OsAMT1;3 mRNA abundance. Following N starvation, NH4+ and NH4NO3 re-supply down-regulated OsAMT1;2 and 3;3 and up-regulated OsAMT1;3, whereas NO3 re-supply down-regulated OsAMT1;1 and 1;2. These suggested that the organ-specific expression pattern of OsAMT could be regulated by N requirement and external N status.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest(No.200903001-5)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)of China+1 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK2010440)China Postdoctoral Science Foundation(No.20110491439)
文摘Ammonium(NH+4) is the main nitrogen(N) form for rice crops, while NH+4near the root surface can be oxidized to nitrate(NO-3)by NH+4-oxidizing bacteria. Nitrate can be accumulated within rice tissues and reused when N supply is insufficient. We compared the remobilization of NO-3stored in the tissue and vacuolar between two rice(Oryza sativa L.) cultivars, Yangdao 6(YD6, indica)with a high N use efficiency(NUE) and Wuyujing 3(WYJ3, japonica) with a low NUE and measured the uptake of NO-3, expression of nitrate reductase(NR), NO-3transporter genes(NRTs), and NR activity after 4 d of N starvation following 7-d cultivation in a solution containing 2.86 mmol L-1NO-3. The results showed that both tissue NO-3concentration and vacuolar NO-3activity were higher in YD6 than WYJ3 under N starvation. YD6 showed a 2- to 3-fold higher expression of OsNRT2.1 in roots on the 1st and 4th day of N starvation and had significantly higher values of NO-3uptake(maximum uptake velocity, Vmax) than the cultivar WYJ3.Furthermore, YD6 had significantly higher leaf and root maximum NR activity(NRAmax) and actual NR activity(NRAact) as well as stronger root expression of the two NR genes after the 1st day of N starvation. There were no significant differences in NRAmax and NRAact between the two rice cultivars on the 4th day of N starvation. The results suggested that YD6 had stronger NRA under N starvation, which might result in better NO-3re-utilization from the vacuole, and higher capacity for NO-3uptake and use, potentially explaining the higher NUE of YD6 compared with WYJ3.
基金Ministry of Science and Technology of the People's Republic of China(2017YFC1200102)the National Natural Science Foundation of China(31971552).
文摘Aims Soil inorganic nitrogen(N)has long been recognized to play an important role in plant invasions.Whilst comparing the N use strategies of multiple invasive versus native plant congeners along an entire N gradient is key to understanding plant invasion success,there are few related studies.Methods We conducted a potted experiment with six invasive and native congeneric pairs,which were subjected to 11 nitrate/ammonium(NO3−/NH4+)ratios(i.e.100%NO3−at one end and 100%NH4+at the other end),each with low-and high-N levels.Each species–N combination was replicated eight times,and thus there were 2112 pots in total.We measured the following traits:the total biomass,growth advantage,biomass allocation,leaf chlorophyll content and low-N tolerance.Important Findings Invasive and native congeners grew well at any NO3−/NH4+ratios,and their responses of growth,allocation and tolerance were approximately parallel along the 11 NO3−/NH4+ratios across two N levels.Plant invaders grew larger and had greater chlorophyll contents,higher root biomass allocation and stronger low-N tolerance than their congeneric natives.These findings suggest that invasive and native plant congeners may utilize similar inorganic N forms(i.e.NO3−and NH4+)across an entire N composition gradient and that higher N use efficiencies could favor alien plants to invade new plant communities where congeneric natives are dominants.