A litterbag experiment of 12 weeks was conducted to study nitrogenmineralization process of prunings of six nitrogen-fixing hedgerowspecies in a dry valley of the Jinsha River. Prunigns wereincorporated into soil or u...A litterbag experiment of 12 weeks was conducted to study nitrogenmineralization process of prunings of six nitrogen-fixing hedgerowspecies in a dry valley of the Jinsha River. Prunigns wereincorporated into soil or used as mulch. The results indicated thatpruning N of the six hedgerow species was mineralized fast in thefirst week and then decreased slowly in the rest of the study period.When prunings were incorporated into soil, the amount of nitrogenmineralized by the end of the first week accounted for 69.9/100,58.2/100, 54.5/100, 43.0/100, 29.6/100 and 20.6/100 of the total N inprungins of Desmodium rensonii, Tephrosia candida, Leucaenaleucoephala, Albizia yunnanensis, Acacia dealbata, and Acaciamearnsii, respectively.展开更多
A field experiment established in 1997 was conducted to study the effect of long-term N fertilizer application on N mineralization in a paddy soil determined using a laboratory anaerobic incubation followed with a fie...A field experiment established in 1997 was conducted to study the effect of long-term N fertilizer application on N mineralization in a paddy soil determined using a laboratory anaerobic incubation followed with a field incubation and to measure the relationship between in situ N mineralization and crop N uptake. To estimate N mineralization in the laboratory, soil samples were collected from plots with N application at different rates for six years and were incubated. Soils treated with fertilizer N mineralized more N than unfertilized soils and mineralization increased with N application rates. Also, the fraction of total N mineralized increased with increasing N fertilizer application. These findings meant that a substantial portion of previously applied N could be recovered slowly over time in subsequent crops. The field incubation of the plot receiving no fertilizer N showed that the NH4^+-N concentration varied greatly during the rice-growing season and seasonal changes of N mineralization were due more to accumulation of NH4^+-N than NO3^-N. Hice N uptake increased up to a maximum of 82 kg N ha^-1 during the season. The close agreement found between in situ N mineralization and rice N uptake suggested that the measurement of in situ N mineralization could provide useful recommendations for adequate fertilizer N application.展开更多
基金Project supported jointly by the Chengdu Di Ao Science Foundation and the Sichuan Provincial Science Foundation for Young Scient
文摘A litterbag experiment of 12 weeks was conducted to study nitrogenmineralization process of prunings of six nitrogen-fixing hedgerowspecies in a dry valley of the Jinsha River. Prunigns wereincorporated into soil or used as mulch. The results indicated thatpruning N of the six hedgerow species was mineralized fast in thefirst week and then decreased slowly in the rest of the study period.When prunings were incorporated into soil, the amount of nitrogenmineralized by the end of the first week accounted for 69.9/100,58.2/100, 54.5/100, 43.0/100, 29.6/100 and 20.6/100 of the total N inprungins of Desmodium rensonii, Tephrosia candida, Leucaenaleucoephala, Albizia yunnanensis, Acacia dealbata, and Acaciamearnsii, respectively.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-413-4)the National Basic Research Program of China (No. 2005CB121107).
文摘A field experiment established in 1997 was conducted to study the effect of long-term N fertilizer application on N mineralization in a paddy soil determined using a laboratory anaerobic incubation followed with a field incubation and to measure the relationship between in situ N mineralization and crop N uptake. To estimate N mineralization in the laboratory, soil samples were collected from plots with N application at different rates for six years and were incubated. Soils treated with fertilizer N mineralized more N than unfertilized soils and mineralization increased with N application rates. Also, the fraction of total N mineralized increased with increasing N fertilizer application. These findings meant that a substantial portion of previously applied N could be recovered slowly over time in subsequent crops. The field incubation of the plot receiving no fertilizer N showed that the NH4^+-N concentration varied greatly during the rice-growing season and seasonal changes of N mineralization were due more to accumulation of NH4^+-N than NO3^-N. Hice N uptake increased up to a maximum of 82 kg N ha^-1 during the season. The close agreement found between in situ N mineralization and rice N uptake suggested that the measurement of in situ N mineralization could provide useful recommendations for adequate fertilizer N application.