Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electroche...Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution.展开更多
Rare earth oxide was prepared via direct pyrolysis of rare earth chloride solution. Based on this technique, a new-type jet-flow pyrolysis reactor was designed, and then the fluid dynamics (pressure and velocity) insi...Rare earth oxide was prepared via direct pyrolysis of rare earth chloride solution. Based on this technique, a new-type jet-flow pyrolysis reactor was designed, and then the fluid dynamics (pressure and velocity) inside the reactor was numerically simulated using a computational fluid dynamics method. The self-produced pressure (p) and the fuel inlet velocity (v) satisfied a quadratic function,p=0.06v2+0.23v?4.49. To fully utilize the combustion-generated heat in pyrolysis of rare earth chloride, an appropriate external pressure p=v2+3v?4.27 should be imposed at the feed inlet. The 1.25- and 1.5-fold increase of feed inlet diameter resulted in decline of adsorption dynamic pressure, but the intake of rare earth chloride increased by more than 30% and 60%, respectively. The fluid flow in the reactor was affected by the feeding rate; the fluid flow peaked near the throat of venturi and gradually smoothed down at the jet-flow reactor’s terminal along with the sharp decline of feeding rate.展开更多
The method to fluorinate the terminal group has achieved remarkable success and been widely used to fine-tune the intrinsic properties of organic acceptor materials.Referring to chlorination,however,it gets less atten...The method to fluorinate the terminal group has achieved remarkable success and been widely used to fine-tune the intrinsic properties of organic acceptor materials.Referring to chlorination,however,it gets less attention and remains ambiguous effect on organic photovoltaic(OPV)cells.Herein,a new non-fullerene acceptor named Y19 was reported with benzotriazole as the electron-deficient core and 2Cl-ICs as the strong electron-withdrawing end groups.Y19 exhibits a wide film absorption band from 600 nm to 948 nm and low LUMO(the lowest unoccupied molecular orbital)energy level of−3.95 eV.Photovoltaic devices based on PM6:Y19 show high-power conversion efficiency(PCE)of 12.76%with high open-circuit voltage(Voc)of 0.84 V,short-circuit current density(Jsc)of 22.38 mA/cm2 and fill factor(FF)of 68.18%.Broad external quantum efficiency(EQE)response of over 60%in the range of 480−860 nm can be obtained.This study demonstrates that chlorination,as a low-cost molecular design strategy,has its own superiorities to improve device performance and promote the potential application in OPV.展开更多
Titanium silicalite-1(TS-1)films were synthesized on stainless steel plate,glass slide and monolith supports via an in-situ hydrothermal method.Characterization data showed that the formation of TS-1 films was easier ...Titanium silicalite-1(TS-1)films were synthesized on stainless steel plate,glass slide and monolith supports via an in-situ hydrothermal method.Characterization data showed that the formation of TS-1 films was easier on the porous flat support with rough surface such as monolith than on the smooth non-porous supports like glass slide and stainless steel plate.The film on the monolith had the highest uniformity and smallest size of crystals.The catalytic property of monolithsupported film was tested for epoxidation of allyl chloride(ACH)by H2O2in a fixed bed reactor.Under the condition of a methanol(solvent)/ACH(90% )/H2O2(30% )ratio of 12:1:1,a LHSV of 1.35 h-1and a temperature of 318 K,the conversion of allyl chloride and the selectivity to epichlorohydrin reached 79% and 51% ,respectively.展开更多
A new acceptor-donor-acceptor(A-D-A) type small-molecule acceptor NCBDT-4 Cl using chlorinated end groups is reported.This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–...A new acceptor-donor-acceptor(A-D-A) type small-molecule acceptor NCBDT-4 Cl using chlorinated end groups is reported.This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–900 nm with a narrow optical bandgap of 1.40 eV. The device based on PBDB-T-SF:NCBDT-4 Cl shows a power conversion efficiency(PCE) of 13.1%without any post-treatment, which represents the best result for all as-cast organic solar cells(OSCs) to date. After device optimizations, the PCE was further enhanced to over 14% with a high short-circuit current density(Jsc) of 22.35 m A cm-2 and a fill-factor(FF) of 74.3%. The improved performance was attributed to the more efficient photo-electron conversion process in the optimal device. To our knowledge, this outstanding efficiency of 14.1% with an energy loss as low as 0.55 eV is among the best results for all single-junction OSCs.展开更多
Halogenation is a very efficient chemical modification method to tune the molecular energy levels, absorption spectra and molecular packing of organic semiconductors. Recently, in the field of organic solar cells(OSCs...Halogenation is a very efficient chemical modification method to tune the molecular energy levels, absorption spectra and molecular packing of organic semiconductors. Recently, in the field of organic solar cells(OSCs), both fluorine-and chlorinesubstituted photovoltaic materials, including donors and acceptors, demonstrated their great potentials in achieving high power conversion efficiencies(PCEs), raising a question that how to make a decision between fluorination and chlorination when designing materials. Herein, we systemically studied the impact of fluorination and chlorination on the properties of resulting donors(PBDB-T-2 F and PBDB-T-2 Cl) and acceptors(IT-4 F and IT-4 Cl). The results suggest that all the OSCs based on different donor and acceptor combinations can deliver good PCEs around 13%–14%. Chlorination is more effective than fluorination in downshifting the molecular energy levels and broadening the absorption spectra. The influence of chlorination and fluorination on the crystallinity of the resulting materials is dependent on their introduction positions. As chlorination has the advantage of easy synthesis, it is more attractive in designing low-cost photovoltaic materials and therefore may have more potential in largescale applications.展开更多
A carbon monoxide gas sensor based on single-walled carbon nanotube (SWCNT) has been developed for detection of carbon monoxide (CO) at room temperature. Copper chloride (CuC1) was mixed with SWNT by mechanical ...A carbon monoxide gas sensor based on single-walled carbon nanotube (SWCNT) has been developed for detection of carbon monoxide (CO) at room temperature. Copper chloride (CuC1) was mixed with SWNT by mechanical blending. The thin film was deposited on interdigitated electrodes by using airbrush technology. This paper described the fabrication of the sensor for detecting carbon monoxide with concentrations from 20 ppm to 100 ppm. The performance of CO gas sensor was measured by using relevant apparatus to obtain the continuous sensor electric resistance change on exposure to CO and air atmosphere at room temperature, respectively. The results exhibited that the senor presented a larger sensitivity and a good recoverability. The experimental results suggested the potential use of CuC1 doped SWCNT for CO detecting.展开更多
基金supported by the National Natural Science Foundation of China(21507104)the Fundamental Research Funds for the Central Universities of China
文摘Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution.
基金Projects(51204040,U1202274)supported by the National Natural Science Foundation of ChinaProjects(2010AA03A405,2102AA062303)supported by the National High-tech Research and Development Program of China+1 种基金Project(2012BAE01B02)supported by the National Science and Technology Support Program of ChinaProject(N130702001)supported by the Fundamental Research Funds for the Central Universities,China
文摘Rare earth oxide was prepared via direct pyrolysis of rare earth chloride solution. Based on this technique, a new-type jet-flow pyrolysis reactor was designed, and then the fluid dynamics (pressure and velocity) inside the reactor was numerically simulated using a computational fluid dynamics method. The self-produced pressure (p) and the fuel inlet velocity (v) satisfied a quadratic function,p=0.06v2+0.23v?4.49. To fully utilize the combustion-generated heat in pyrolysis of rare earth chloride, an appropriate external pressure p=v2+3v?4.27 should be imposed at the feed inlet. The 1.25- and 1.5-fold increase of feed inlet diameter resulted in decline of adsorption dynamic pressure, but the intake of rare earth chloride increased by more than 30% and 60%, respectively. The fluid flow in the reactor was affected by the feeding rate; the fluid flow peaked near the throat of venturi and gradually smoothed down at the jet-flow reactor’s terminal along with the sharp decline of feeding rate.
基金Project(21875286)supported by the National Natural Science Foundation of China。
文摘The method to fluorinate the terminal group has achieved remarkable success and been widely used to fine-tune the intrinsic properties of organic acceptor materials.Referring to chlorination,however,it gets less attention and remains ambiguous effect on organic photovoltaic(OPV)cells.Herein,a new non-fullerene acceptor named Y19 was reported with benzotriazole as the electron-deficient core and 2Cl-ICs as the strong electron-withdrawing end groups.Y19 exhibits a wide film absorption band from 600 nm to 948 nm and low LUMO(the lowest unoccupied molecular orbital)energy level of−3.95 eV.Photovoltaic devices based on PM6:Y19 show high-power conversion efficiency(PCE)of 12.76%with high open-circuit voltage(Voc)of 0.84 V,short-circuit current density(Jsc)of 22.38 mA/cm2 and fill factor(FF)of 68.18%.Broad external quantum efficiency(EQE)response of over 60%in the range of 480−860 nm can be obtained.This study demonstrates that chlorination,as a low-cost molecular design strategy,has its own superiorities to improve device performance and promote the potential application in OPV.
基金the Natural Science Foundation of Shanxi Province,China(No.2011011023-2)for financial support
文摘Titanium silicalite-1(TS-1)films were synthesized on stainless steel plate,glass slide and monolith supports via an in-situ hydrothermal method.Characterization data showed that the formation of TS-1 films was easier on the porous flat support with rough surface such as monolith than on the smooth non-porous supports like glass slide and stainless steel plate.The film on the monolith had the highest uniformity and smallest size of crystals.The catalytic property of monolithsupported film was tested for epoxidation of allyl chloride(ACH)by H2O2in a fixed bed reactor.Under the condition of a methanol(solvent)/ACH(90% )/H2O2(30% )ratio of 12:1:1,a LHSV of 1.35 h-1and a temperature of 318 K,the conversion of allyl chloride and the selectivity to epichlorohydrin reached 79% and 51% ,respectively.
基金supported by the National Natural Science Foundation of China (91633301, 51773095)MoST of China (2014CB643502)+1 种基金Tianjin city (17JCJQJC44500, 17CZDJC31100)111 Project (B12015)
文摘A new acceptor-donor-acceptor(A-D-A) type small-molecule acceptor NCBDT-4 Cl using chlorinated end groups is reported.This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–900 nm with a narrow optical bandgap of 1.40 eV. The device based on PBDB-T-SF:NCBDT-4 Cl shows a power conversion efficiency(PCE) of 13.1%without any post-treatment, which represents the best result for all as-cast organic solar cells(OSCs) to date. After device optimizations, the PCE was further enhanced to over 14% with a high short-circuit current density(Jsc) of 22.35 m A cm-2 and a fill-factor(FF) of 74.3%. The improved performance was attributed to the more efficient photo-electron conversion process in the optimal device. To our knowledge, this outstanding efficiency of 14.1% with an energy loss as low as 0.55 eV is among the best results for all single-junction OSCs.
基金supported by the National Natural Science Foundation of China (91333204, 91633301, 51673201)the Ministry of Science and Technology of China (2014CB643501)the Chinese Academy of Sciences (XDB12030200, KJZD-EW-J01)
文摘Halogenation is a very efficient chemical modification method to tune the molecular energy levels, absorption spectra and molecular packing of organic semiconductors. Recently, in the field of organic solar cells(OSCs), both fluorine-and chlorinesubstituted photovoltaic materials, including donors and acceptors, demonstrated their great potentials in achieving high power conversion efficiencies(PCEs), raising a question that how to make a decision between fluorination and chlorination when designing materials. Herein, we systemically studied the impact of fluorination and chlorination on the properties of resulting donors(PBDB-T-2 F and PBDB-T-2 Cl) and acceptors(IT-4 F and IT-4 Cl). The results suggest that all the OSCs based on different donor and acceptor combinations can deliver good PCEs around 13%–14%. Chlorination is more effective than fluorination in downshifting the molecular energy levels and broadening the absorption spectra. The influence of chlorination and fluorination on the crystallinity of the resulting materials is dependent on their introduction positions. As chlorination has the advantage of easy synthesis, it is more attractive in designing low-cost photovoltaic materials and therefore may have more potential in largescale applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.61176066,61101031)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120185110012)
文摘A carbon monoxide gas sensor based on single-walled carbon nanotube (SWCNT) has been developed for detection of carbon monoxide (CO) at room temperature. Copper chloride (CuC1) was mixed with SWNT by mechanical blending. The thin film was deposited on interdigitated electrodes by using airbrush technology. This paper described the fabrication of the sensor for detecting carbon monoxide with concentrations from 20 ppm to 100 ppm. The performance of CO gas sensor was measured by using relevant apparatus to obtain the continuous sensor electric resistance change on exposure to CO and air atmosphere at room temperature, respectively. The results exhibited that the senor presented a larger sensitivity and a good recoverability. The experimental results suggested the potential use of CuC1 doped SWCNT for CO detecting.