金属氯化物-石墨插层化合物具有导电性优异,石墨层间距大等特点,可用作钠离子电池负极材料。然而,在传统金属氯化物插层石墨过程中,不可避免地用到氯气,既增加了实验操作的风险,也对实验设备提出更高要求。基于上述原因,本文创新性地使...金属氯化物-石墨插层化合物具有导电性优异,石墨层间距大等特点,可用作钠离子电池负极材料。然而,在传统金属氯化物插层石墨过程中,不可避免地用到氯气,既增加了实验操作的风险,也对实验设备提出更高要求。基于上述原因,本文创新性地使用SO_(2)Cl_(2)作为氯源来促进BiCl_(3)插层石墨。该方法不仅有效提高了BiCl_(3)插层效率,也避免了直接使用氯气带来的安全性风险。采用该方法所合成的三氯化铋-石墨插层化合物(BiCl_(3)-GICs)的层间距为1.26 nm,BiCl_(3)插层含量高达42%。以其为负极材料,组装的钠离子电池具有高的比容量(213 mAh g^(-1)at 1 A g^(-1))和优异的倍率性能(170 mAh g^(-1)at 5 A g^(-1))。此外,原位拉曼光谱测试结果表明,首圈放电后石墨与插层的BiCl_(3)相互作用减弱,该过程有效促进了钠离子在石墨层内的存储。采用该方法可成功制备多种类型金属氯化物-石墨插层化合物,为开发高性能储能材料提供了可行思路。展开更多
用巨正则onte Carlo(GCMC)方法模拟了甲烷在氯化锆层柱材料中的吸附。模拟中,氯化锆层柱材料模型化为柱子均匀分布在层板间的层柱孔,非极性分子甲烷采用Lennard-Jones分子模型,层板墙采用Steele的10-4-3模型,流体分子与柱子的相互...用巨正则onte Carlo(GCMC)方法模拟了甲烷在氯化锆层柱材料中的吸附。模拟中,氯化锆层柱材料模型化为柱子均匀分布在层板间的层柱孔,非极性分子甲烷采用Lennard-Jones分子模型,层板墙采用Steele的10-4-3模型,流体分子与柱子的相互作用采用点-点(site to site)的方法计算。在高度理想化模型的基础上,引入了交互作用参数kfw,建立了有效势能模型。通过实验数据确定交互作用参数kfw,从而使该模型能有效地表征流体与层板墙的相互作用。根据77K温度下氮气的实验吸附数据,确定了流体和层板墙间的交互作用参数。然后用这个有效的参数kfw=0.65模拟了三个超临界温度下氯化锆层柱材料中甲烷的吸附情形,得到了它们的吸附等温线,局部密度颁皮及流体分子在层柱微孔中的瞬时构象,并分析了温度对材料吸附性能的影响。结果表明GCMC方法是预测材料吸附性能的一种强有力的工具。展开更多
Differences and similarities of durability design for concrete bridges in Chinese-code and Eurocode are identified and discussed. Exposure environment classes and regulations of the minimum concrete cover and strength...Differences and similarities of durability design for concrete bridges in Chinese-code and Eurocode are identified and discussed. Exposure environment classes and regulations of the minimum concrete cover and strength of the two codes are compared and analyzed. Numerical calculations for predicting the durable life of bridges related to carbonization and chlorides corrosion (marine and de-icing) are conducted. The results show that provisions in the two codes can satisfy the durability requirements under carbonization whereas they cannot guarantee the durability for bridges in spray and splash zones. Enhancing the waterproof capacity and reducing the frequent use of de-icing agents are vital to improving the bridge durability. Some recommendations for upgrading the durability are also included.展开更多
The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of...The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of the WBE was carded out to analyze the performance of coating delamination and corrosion behavior of carbon steel beneath defective coating. The EIS data revealed that protective capability of coating decreased with immersion time and the degree of cathodic delamination showed a rapid rise. The current density distribution of WBE indicated that cathodic sites was located at the defect at the beginning of immersion and gradually spread into the intact coating. The cathodic regions were distinguished from the anodic area and distributed over the WBE. The changes of cathodic sites could reflect the deterioration process of defective coating. The cathodic area ratio was a more useful parameter than the cathodic delamination degree to evaluate the coating cathodic delamination. The polarity reversals of electrodes at the defect and beneath coating were observed. A simple discussion of relationship between the blister and the polarity reversal was made from a standpoint of electrochemical distribution. WBE method was able to map and record the changes of local cathodic sites beneath defective coating in real time, which could provide more detailed information about the local degradation of coating.展开更多
A low-toxicity and environment-friendly NaCl−KCl−CsCl−K_(2)NbF_(7) system was used to prepare Nb coatings on Mo substrates.The effects of temperature,current density and electrodeposition time on the micromorphologies...A low-toxicity and environment-friendly NaCl−KCl−CsCl−K_(2)NbF_(7) system was used to prepare Nb coatings on Mo substrates.The effects of temperature,current density and electrodeposition time on the micromorphologies and textures of the electrodeposited Nb coatings were studied.The results showed that Nb coatings obtained at 30−70 mA/cm^(2) in the temperature range of 700−750℃ were continuous and compact,with a hardness range of 2.16−2.45 GPa.As the columnar crystals grew with time,the preferential growth orientations of the Nb coatings changed from<200>to<211>and then became disordered.With increasing polarization,the morphologies of the Nb coatings changed from hexagonal star-like surface to conical or pyramid-like surface.展开更多
The objective of this study was to determine the contamination of OCPs (organochlorine pesticides) in sediments from the upper middle of Sao Francisco River (Bahia, Brazil) in order to evaluate their potential pol...The objective of this study was to determine the contamination of OCPs (organochlorine pesticides) in sediments from the upper middle of Sao Francisco River (Bahia, Brazil) in order to evaluate their potential pollution risks. Samples of surface sediments were collected using a Petersen dredge at 21 stations located between Sobradinho and Cura^i. The organochlorine compounds analyzed were: p,p'-DDT, p,p'-DDD, p,p'-DDE, dicofol, methoxychlor, HCHs, aldrin, endrin, endrin aldehyde, endrin ketone, dieldrin, heptachlor, heptachlor epoxide, endosulfan (ct, fl and sulfate) and chlordane (ct and ,/). Extractions were carried out using the MAE (microwave-assisted extraction) method and organochlorine pesticides determination was achieved by GC/MS (gas chromatography-mass spectrometry). Organochlorine concentrations ranged between 1.51-820.00 ng.gx, indicating very low to high levels. The most frequent OCPs were endrin aldehyde, -HCH, HCH, HCH, heptachlor and heptachlor epoxide.展开更多
Engineering an efficient interface is a trustworthy strategy for designing advanced photocatalytic systems for solar energy conversion.Herein,oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues were su...Engineering an efficient interface is a trustworthy strategy for designing advanced photocatalytic systems for solar energy conversion.Herein,oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues were successfully fabricated via a facile solvothermal strategy by the multifunctional regulatory mechanism of introduced chloridion.Both DFT calculations and speciation determination revealed that chloridion displayed a more pronounced effect in the controllable synthesis of oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues:ultrathinning and defect-engineering.This built-in multi-cooperative interface endowed Bi_(2)WO_(6)with intriguing photoelectrochemical properties,O_(2) activation ability,and ultrahigh activity in visible-light powered deep oxidation of NO.A reasonable photocatalytic mechanism was proposed based on in situ infrared spectroscopy analysis and theoretical calculations.We believe that this multi-cooperative interface engineering of oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues could provide new insights into the design of two-dimensional(2D)layered materials with efficient active sites and pave the way for efficient NO photooxidation systems.展开更多
Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is conside...Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is considered to a promising technique to prevent and eliminate stratification in LNG storage tanks. This study is concerned with the numerical simulation of a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The jet behavior was investigated with the laboratory-based experiment of the authors' previous study. A numerical method proposed by the authors is employed for the simulation. The upper and lower fluids are water and a NaCl-water solution, respectively, and the lower fluid is issued vertically upward from a nozzle on the bottom of the tank. The Reynolds number (Re) defined by the jet velocity and the nozzle diameter ranges from 95 to 2,378, and the mass concentration of the NaCl-water solution Co is set at 0.02 and 0.04. The simulation highlights the jet-induced mixing between the upper and lower fluids. It also clarifies the effects of Re and C0 on the height and horizontal spread of the jet.展开更多
The mixing phenomena of a two-layer density-stratified fluid induced by a jet in a tank are experimentally investigated. The upper and lower fluids are water and a NaCl-water solution, respectively, with the lower flu...The mixing phenomena of a two-layer density-stratified fluid induced by a jet in a tank are experimentally investigated. The upper and lower fluids are water and a NaCl-water solution, respectively, with the lower fluid issued vertically upward from a nozzle at the bottom of the tank. The jet Reynolds number Re, defined by the jet velocity and the water kinematic viscosity, ranges from 90 to 4,200. The mass concentration of the NaCl-water solution Co is less than 0.08. The flow visualization makes clear the jet behavior relative to the density interface between the upper and lower fluids. The measurement of the concentration distribution of the water paint issued with the jet highlights the effects of Re and Co on the mixing between the jet and the ambient fluid. The measurement of the fluid velocity distribution with a PIV (particle image velocimetry) system successfully elucidates the relationship between the velocity field and the resultant mixing.展开更多
To solve the inherent disadvantages in conventional processes for electrodeposition of zinc, it's necessary to develop more high-efficiency and environmentally friendly electrolytes. In this work, it was found that t...To solve the inherent disadvantages in conventional processes for electrodeposition of zinc, it's necessary to develop more high-efficiency and environmentally friendly electrolytes. In this work, it was found that the dissolution of ZnO was remarka- bly enhanced in some imidazolium chloride by the addition of urea, and the solubility of ZnO in 1:1 [Amim]C1/urea mixture was as high as 8.35 wt% at 373.2 K. Electrochemical measurements showed that zinc could be readily electrodeposited from the solutions of ZnO. Bright, dense and well adherent zinc coatings with good purity were obtained from 0.6 M solution of ZnO in 1:1 [Amim]C1/urea at 323.2-343.2 K. It's expected that the solutions of ZnO in imidazolium chloride/urea mixtures have the potential to replace the traditional electrolytes, especially toxic zinc chloride-based ones for zinc electroplating, as well as preparation of zinc materials.展开更多
Nanosized Ni particles with an average diameter of about 8 nm were prepared by reducing of NiCl 2 with sodium borohydride (NaBH 4 ) in aqueous solution. By moderate annealing in protective atmosphere, the composite gr...Nanosized Ni particles with an average diameter of about 8 nm were prepared by reducing of NiCl 2 with sodium borohydride (NaBH 4 ) in aqueous solution. By moderate annealing in protective atmosphere, the composite grew up to be 15-20 nm particles. Both of the as-prepared and annealed Ni particles were coated by a layer of manganese oxide via decomposition reaction in aqueous KMnO4 solution. Hysteresis loops of as-prepared samples show a large increase in the magnetization with decreasing temperature and an unsaturated component at high magnetic field. In contrast, the ferromagnetic characteristics of annealed one are much stronger with large magnetization and coercivity. The thermomagnetic curves verified the coexistence of ferromagnetic Ni and antiferromangetic Mn oxide phases. But there exists no exchange bias behavior in the samples, even though the interface structure between the ferromagnetic Ni core and the antiferromagnetic manganese oxides has been distinctly formed. The absence of exchange bias probably originates from the weak ferromagnetic characteristic of Ni cores.展开更多
It is widely stated that most organic contaminants could be completely mineralized by Advanced Oxidation Processes(AOPs). This statement means that the concentration of the organic contaminant at equilibrium(limiting ...It is widely stated that most organic contaminants could be completely mineralized by Advanced Oxidation Processes(AOPs). This statement means that the concentration of the organic contaminant at equilibrium(limiting concentration,LC)is low enough to be neglected.However,for environmental safety,especially drinking water safety,this statement needs to be verified from chemical engineering thermodynamic analysis.In this paper,trichloromethane(CHCl3)and dichloromethane(CH2Cl2) are selected as the model systems,and the equilibrium concentration(theoretical limiting concentration,TLC)for the mineralization of chlorinated methanes in aqueous solutions at the different initial concentrations of chlorinated methanes,pH values and·OH concentrations by AOPs are investigated by thermodynamic analysis.The results in this paper show that the TLC for the mineralization of CHCl3 and CH2Cl2 with·OH increases with increasing initial concentrations of CHCl3 and CH2Cl2,decreases with increasing concentration of·OH,and the TLC for the mineralization of CHCl3 decreases with increasing pH values except that the pH value changes from 3.0 to 3.5.For the mineralization of CH2Cl2 with·OH,at the concentrations of·OH obtained from the literature,there is no obvious change of the TLC with pH values,while as the concentrations of·OH increase by 10 and 100 times,the TLC decreases with the increasing pH values from 2.0 to 3.0 and from 3.5 to 4.5,and increases with the increasing pH values from 3.0 to 3.5 and from 4.5 to 5.0.The investigations in this paper imply that high concentration of·OH,a bit higher pH values(4.0–5.0)in acid environment and low initial concentrations of the organic contaminants are beneficial for the complete mineralization of chlorinated methanes by AOPs.展开更多
基金supported by the National Key Research and Development Program of China (2022YFB4101600)the Fundamental Research Funds for the Central Universities (DUT22ZD207, DUT22LAB612)the Shandong Provincial Natural Science Foundation (ZR2023QB095)。
文摘金属氯化物-石墨插层化合物具有导电性优异,石墨层间距大等特点,可用作钠离子电池负极材料。然而,在传统金属氯化物插层石墨过程中,不可避免地用到氯气,既增加了实验操作的风险,也对实验设备提出更高要求。基于上述原因,本文创新性地使用SO_(2)Cl_(2)作为氯源来促进BiCl_(3)插层石墨。该方法不仅有效提高了BiCl_(3)插层效率,也避免了直接使用氯气带来的安全性风险。采用该方法所合成的三氯化铋-石墨插层化合物(BiCl_(3)-GICs)的层间距为1.26 nm,BiCl_(3)插层含量高达42%。以其为负极材料,组装的钠离子电池具有高的比容量(213 mAh g^(-1)at 1 A g^(-1))和优异的倍率性能(170 mAh g^(-1)at 5 A g^(-1))。此外,原位拉曼光谱测试结果表明,首圈放电后石墨与插层的BiCl_(3)相互作用减弱,该过程有效促进了钠离子在石墨层内的存储。采用该方法可成功制备多种类型金属氯化物-石墨插层化合物,为开发高性能储能材料提供了可行思路。
文摘用巨正则onte Carlo(GCMC)方法模拟了甲烷在氯化锆层柱材料中的吸附。模拟中,氯化锆层柱材料模型化为柱子均匀分布在层板间的层柱孔,非极性分子甲烷采用Lennard-Jones分子模型,层板墙采用Steele的10-4-3模型,流体分子与柱子的相互作用采用点-点(site to site)的方法计算。在高度理想化模型的基础上,引入了交互作用参数kfw,建立了有效势能模型。通过实验数据确定交互作用参数kfw,从而使该模型能有效地表征流体与层板墙的相互作用。根据77K温度下氮气的实验吸附数据,确定了流体和层板墙间的交互作用参数。然后用这个有效的参数kfw=0.65模拟了三个超临界温度下氯化锆层柱材料中甲烷的吸附情形,得到了它们的吸附等温线,局部密度颁皮及流体分子在层柱微孔中的瞬时构象,并分析了温度对材料吸附性能的影响。结果表明GCMC方法是预测材料吸附性能的一种强有力的工具。
文摘Differences and similarities of durability design for concrete bridges in Chinese-code and Eurocode are identified and discussed. Exposure environment classes and regulations of the minimum concrete cover and strength of the two codes are compared and analyzed. Numerical calculations for predicting the durable life of bridges related to carbonization and chlorides corrosion (marine and de-icing) are conducted. The results show that provisions in the two codes can satisfy the durability requirements under carbonization whereas they cannot guarantee the durability for bridges in spray and splash zones. Enhancing the waterproof capacity and reducing the frequent use of de-icing agents are vital to improving the bridge durability. Some recommendations for upgrading the durability are also included.
基金supported by the National Natural Science Foundation of China (Grant No. 51131005)
文摘The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of the WBE was carded out to analyze the performance of coating delamination and corrosion behavior of carbon steel beneath defective coating. The EIS data revealed that protective capability of coating decreased with immersion time and the degree of cathodic delamination showed a rapid rise. The current density distribution of WBE indicated that cathodic sites was located at the defect at the beginning of immersion and gradually spread into the intact coating. The cathodic regions were distinguished from the anodic area and distributed over the WBE. The changes of cathodic sites could reflect the deterioration process of defective coating. The cathodic area ratio was a more useful parameter than the cathodic delamination degree to evaluate the coating cathodic delamination. The polarity reversals of electrodes at the defect and beneath coating were observed. A simple discussion of relationship between the blister and the polarity reversal was made from a standpoint of electrochemical distribution. WBE method was able to map and record the changes of local cathodic sites beneath defective coating in real time, which could provide more detailed information about the local degradation of coating.
基金the Special Fund of Hunan Province for Innovative Province Building-Support Program for Young Talents of Hunan,China(No.2020RC3034).
文摘A low-toxicity and environment-friendly NaCl−KCl−CsCl−K_(2)NbF_(7) system was used to prepare Nb coatings on Mo substrates.The effects of temperature,current density and electrodeposition time on the micromorphologies and textures of the electrodeposited Nb coatings were studied.The results showed that Nb coatings obtained at 30−70 mA/cm^(2) in the temperature range of 700−750℃ were continuous and compact,with a hardness range of 2.16−2.45 GPa.As the columnar crystals grew with time,the preferential growth orientations of the Nb coatings changed from<200>to<211>and then became disordered.With increasing polarization,the morphologies of the Nb coatings changed from hexagonal star-like surface to conical or pyramid-like surface.
文摘The objective of this study was to determine the contamination of OCPs (organochlorine pesticides) in sediments from the upper middle of Sao Francisco River (Bahia, Brazil) in order to evaluate their potential pollution risks. Samples of surface sediments were collected using a Petersen dredge at 21 stations located between Sobradinho and Cura^i. The organochlorine compounds analyzed were: p,p'-DDT, p,p'-DDD, p,p'-DDE, dicofol, methoxychlor, HCHs, aldrin, endrin, endrin aldehyde, endrin ketone, dieldrin, heptachlor, heptachlor epoxide, endosulfan (ct, fl and sulfate) and chlordane (ct and ,/). Extractions were carried out using the MAE (microwave-assisted extraction) method and organochlorine pesticides determination was achieved by GC/MS (gas chromatography-mass spectrometry). Organochlorine concentrations ranged between 1.51-820.00 ng.gx, indicating very low to high levels. The most frequent OCPs were endrin aldehyde, -HCH, HCH, HCH, heptachlor and heptachlor epoxide.
文摘Engineering an efficient interface is a trustworthy strategy for designing advanced photocatalytic systems for solar energy conversion.Herein,oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues were successfully fabricated via a facile solvothermal strategy by the multifunctional regulatory mechanism of introduced chloridion.Both DFT calculations and speciation determination revealed that chloridion displayed a more pronounced effect in the controllable synthesis of oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues:ultrathinning and defect-engineering.This built-in multi-cooperative interface endowed Bi_(2)WO_(6)with intriguing photoelectrochemical properties,O_(2) activation ability,and ultrahigh activity in visible-light powered deep oxidation of NO.A reasonable photocatalytic mechanism was proposed based on in situ infrared spectroscopy analysis and theoretical calculations.We believe that this multi-cooperative interface engineering of oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues could provide new insights into the design of two-dimensional(2D)layered materials with efficient active sites and pave the way for efficient NO photooxidation systems.
文摘Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is considered to a promising technique to prevent and eliminate stratification in LNG storage tanks. This study is concerned with the numerical simulation of a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The jet behavior was investigated with the laboratory-based experiment of the authors' previous study. A numerical method proposed by the authors is employed for the simulation. The upper and lower fluids are water and a NaCl-water solution, respectively, and the lower fluid is issued vertically upward from a nozzle on the bottom of the tank. The Reynolds number (Re) defined by the jet velocity and the nozzle diameter ranges from 95 to 2,378, and the mass concentration of the NaCl-water solution Co is set at 0.02 and 0.04. The simulation highlights the jet-induced mixing between the upper and lower fluids. It also clarifies the effects of Re and C0 on the height and horizontal spread of the jet.
文摘The mixing phenomena of a two-layer density-stratified fluid induced by a jet in a tank are experimentally investigated. The upper and lower fluids are water and a NaCl-water solution, respectively, with the lower fluid issued vertically upward from a nozzle at the bottom of the tank. The jet Reynolds number Re, defined by the jet velocity and the water kinematic viscosity, ranges from 90 to 4,200. The mass concentration of the NaCl-water solution Co is less than 0.08. The flow visualization makes clear the jet behavior relative to the density interface between the upper and lower fluids. The measurement of the concentration distribution of the water paint issued with the jet highlights the effects of Re and Co on the mixing between the jet and the ambient fluid. The measurement of the fluid velocity distribution with a PIV (particle image velocimetry) system successfully elucidates the relationship between the velocity field and the resultant mixing.
基金supported financially by the National Basic Research Program of China (2009CB219901)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2012BAF03B01)+1 种基金the National Natural Science Foundation of China(20906096)Open-end Fund of State Key Laboratory of Multiphase Complex Systems (MPCS-2011-D-06)
文摘To solve the inherent disadvantages in conventional processes for electrodeposition of zinc, it's necessary to develop more high-efficiency and environmentally friendly electrolytes. In this work, it was found that the dissolution of ZnO was remarka- bly enhanced in some imidazolium chloride by the addition of urea, and the solubility of ZnO in 1:1 [Amim]C1/urea mixture was as high as 8.35 wt% at 373.2 K. Electrochemical measurements showed that zinc could be readily electrodeposited from the solutions of ZnO. Bright, dense and well adherent zinc coatings with good purity were obtained from 0.6 M solution of ZnO in 1:1 [Amim]C1/urea at 323.2-343.2 K. It's expected that the solutions of ZnO in imidazolium chloride/urea mixtures have the potential to replace the traditional electrolytes, especially toxic zinc chloride-based ones for zinc electroplating, as well as preparation of zinc materials.
基金the National Natural Science Foundation of China (Grant Nos. 50271026 and 50971044)the International S&T Cooperation Program of China (Grant No. 2012DFA51300)
文摘Nanosized Ni particles with an average diameter of about 8 nm were prepared by reducing of NiCl 2 with sodium borohydride (NaBH 4 ) in aqueous solution. By moderate annealing in protective atmosphere, the composite grew up to be 15-20 nm particles. Both of the as-prepared and annealed Ni particles were coated by a layer of manganese oxide via decomposition reaction in aqueous KMnO4 solution. Hysteresis loops of as-prepared samples show a large increase in the magnetization with decreasing temperature and an unsaturated component at high magnetic field. In contrast, the ferromagnetic characteristics of annealed one are much stronger with large magnetization and coercivity. The thermomagnetic curves verified the coexistence of ferromagnetic Ni and antiferromangetic Mn oxide phases. But there exists no exchange bias behavior in the samples, even though the interface structure between the ferromagnetic Ni core and the antiferromagnetic manganese oxides has been distinctly formed. The absence of exchange bias probably originates from the weak ferromagnetic characteristic of Ni cores.
基金supported by the Chinese National Key Technology Research and Development Program(2006AA03Z455)NSFC-RGC(20731160614)+2 种基金Program for Changjiang Scholars and Innovative Research Team in Univer-sity(IRT0732)National Basic Research Program of China(2009CB226103)the National Natural Science Foundation of China(20976080)
文摘It is widely stated that most organic contaminants could be completely mineralized by Advanced Oxidation Processes(AOPs). This statement means that the concentration of the organic contaminant at equilibrium(limiting concentration,LC)is low enough to be neglected.However,for environmental safety,especially drinking water safety,this statement needs to be verified from chemical engineering thermodynamic analysis.In this paper,trichloromethane(CHCl3)and dichloromethane(CH2Cl2) are selected as the model systems,and the equilibrium concentration(theoretical limiting concentration,TLC)for the mineralization of chlorinated methanes in aqueous solutions at the different initial concentrations of chlorinated methanes,pH values and·OH concentrations by AOPs are investigated by thermodynamic analysis.The results in this paper show that the TLC for the mineralization of CHCl3 and CH2Cl2 with·OH increases with increasing initial concentrations of CHCl3 and CH2Cl2,decreases with increasing concentration of·OH,and the TLC for the mineralization of CHCl3 decreases with increasing pH values except that the pH value changes from 3.0 to 3.5.For the mineralization of CH2Cl2 with·OH,at the concentrations of·OH obtained from the literature,there is no obvious change of the TLC with pH values,while as the concentrations of·OH increase by 10 and 100 times,the TLC decreases with the increasing pH values from 2.0 to 3.0 and from 3.5 to 4.5,and increases with the increasing pH values from 3.0 to 3.5 and from 4.5 to 5.0.The investigations in this paper imply that high concentration of·OH,a bit higher pH values(4.0–5.0)in acid environment and low initial concentrations of the organic contaminants are beneficial for the complete mineralization of chlorinated methanes by AOPs.