Conventional jar tests and on-line size monitoring were used to investigate the effects of slow-mixing intensity and duration on residual turbidity and floc size during charge neutralization coagulation and sweep floc...Conventional jar tests and on-line size monitoring were used to investigate the effects of slow-mixing intensity and duration on residual turbidity and floc size during charge neutralization coagulation and sweep floc- culation with polyaluminum chloride. The compensatory effect of slow-mixing on coagulation performance fol- low!ng inadequate_or excessive rapid-mi_xing was also examined. It is found that slowTmixing intensity has a more marked positive ettect on charge neutralization coas;ulatlon tlaan on sweep tlocculatlon. llle optimal root-mean- square velocity gradient, G, for slow-mixing is 15 s-' for both coagulation mechanisms, and charge neutralization coagulation requires a longer slow-mixing duration. The optimal slow-mixing duration, based on residual turbidity,is longer than the time to tbrm the largest mean Ilocs. The optimal product of G and mixing duration, GT, lbr slow-mixing during charge neutralization coagulation (13500) are higher than that during sweep flocculation (4500) and both are less than the range of values recommended by the American Water Works Association (24000-84000).The optimal GT value under various slow-mixing conditions increases with G. Appropriate extension'of slow-mixing duration during charge neutralization coagulation can improve coagulation performance after an inadequate or excessive rapid-mixing duration, but during sweep flocculation, appropriate shortening of slow-mixing duration after an excessive rapid-mixing or appropriate extension of slow-mixing duration after an inadequate rapid-mixing is favorable.展开更多
At relatively high cellulose mass concentrations(8%,10%,and 12%),homogeneous acetylation of cellulose was carried out in an ionic liquid,1-allyl-3-methylimidazolium chloride(AmimCl).Without using any catalyst,cellulos...At relatively high cellulose mass concentrations(8%,10%,and 12%),homogeneous acetylation of cellulose was carried out in an ionic liquid,1-allyl-3-methylimidazolium chloride(AmimCl).Without using any catalyst,cellulose acetates(CAs)with the degree of substitution(DS)in a range from 0.4 to 3.0 were synthesized in one-step.The effects of reaction time,temperature and molar ratio of acetic anhydride/anhydroglucose unit(AGU) in cellulose on DS value of CAs were investigated.The synthesized CAs were characterized by means of FT-IR, NMR,and solubility,mechanical and thermal tests.After the acetylation,the used ionic liquid AmimCl was easily recycled and reused.This study shows the potential of the homogeneous acetylation of cellulose at relatively high concentrations in ionic liquids in future industrial applications.展开更多
This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand con...This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand containing concrete was used for the trials.An analysis of chloride ion diffusion coefficients at different factor levels was performed.A predictive model of chloride ion diffusion in concrete is developed through regression analysis.The experimental results show that when the water/cement ratio varies from 0.45 to 0.60,and the water consumption per cubic meter varies from 185 to 215 kg,and the curing time varies from 30 to 180 d then the size of the effects fall in the order(most significant first): curing time,type of sand,water consumption per cubic meter,and water/cement ratio.Chloride ion penetration is reduced,and better durability of the concrete is observed,with longer curing times,less water consumption per cubic meter,and a smaller water/cement ratio.展开更多
The effects of various parameters on the removal rate of CN were discussed in the paper. The results showed that under the conditions of 30℃ pH = 3.0, Fe2+ dosage was 80 mg/L, the NaCIO concentration of 0.10 mol/L, ...The effects of various parameters on the removal rate of CN were discussed in the paper. The results showed that under the conditions of 30℃ pH = 3.0, Fe2+ dosage was 80 mg/L, the NaCIO concentration of 0.10 mol/L, reaction time in 60 min, Fe2+ has a satisfactory catalytic activation, and the removal rate of CN was about 37.89%.展开更多
SCC (stress corrosion cracking) is environmentally well-known as a failure caused by exposure to a corroding while under a sustained tensile stress. SCC is most often rapid, unpredictable. Failure can occur in a sho...SCC (stress corrosion cracking) is environmentally well-known as a failure caused by exposure to a corroding while under a sustained tensile stress. SCC is most often rapid, unpredictable. Failure can occur in a short time as a few hours or take years and decades to happen. Most alloys are liable to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are common to perform poorly. SCC of austenitic stainless steels of types 316 was investigated as a function of applied stress at room temperature in sodium chloride solutions using a constant load method. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of notched specimen. The stress depends on fracture appearance and parameters of time to cracking, and cracking growth. The results explained in terms of comparison between the two concentrations of sodium chloride solutions.展开更多
The effectiveness of chlorine and ultraviolet light at inactivating indigenous microbes in primary treated wastewater was examined in this study. The inactivation rates for somatic colipahge and F-specific bacteriopha...The effectiveness of chlorine and ultraviolet light at inactivating indigenous microbes in primary treated wastewater was examined in this study. The inactivation rates for somatic colipahge and F-specific bacteriophage were less than 2.5 log and 1 log, respectively, at either free chlorine doses of 6, 15 mg/L and 30 mg/L after 30 minutes contact time. However, E. coli and total coliforms were susceptible to chlorination and inactivated more than 4 log within first 15 minutes of contact time at any chlorine dosage tested. In contrast, the inactivation of bacteriophage was increased when increasing UV fluence. At the same disinfection effectiveness against E. coli, UV disinfection was more effective than chlorination against F-specific bacteriophages.展开更多
The effect of NaCI and proline on somatic embryos formation and germination of date palm (Phoenix dactylifera L.) cv. Barhee was studied. Quarters of shoot tips were cultured on MS solid growth media supplied with d...The effect of NaCI and proline on somatic embryos formation and germination of date palm (Phoenix dactylifera L.) cv. Barhee was studied. Quarters of shoot tips were cultured on MS solid growth media supplied with different concentrations of salt (NaCI) (0.5%, 1%, 1.5%, 2%, 2.5% and 3%, respectively) and proline (25, 50 and 75 mg L1) either individually or in combination. Results showed that the addition of NaC1 (starting at 1%) caused a significant increase in the cylindrical embryos formation time, while their lengths and fresh weights were decreased at salt concentrations (0.5% and 2%). No significant effect was noticed on the formation time by using proline except at concentration of 25 mg L^-1 which caused an increase in their lengths and fresh weights. The interaction between all salt concentrations and proline (25 mg LL) caused a significant increase in the formation time as well as in their lengths and fresh weights. The addition of NaC1 to the media caused a significant effect on the germination time and a reduction on the percentages of somatic embryo germination starting at 2% and the following ones. A reduction in the lengths of radicals and the plumules of the formed embryos was noticed at 1.5% NaCI. Proline addition reduced the initial time and increased the germination percentages as well as the lengths of radicals and plumules. The interaction between salt and proline treatments caused a significant reduction in the initiation time and an increase in the germination percentages and lengths of radicals and plumules.展开更多
The chlorination process is one of the water treatment method used for the disinfection of water. The disinfection by products are trihalomethanes such as chloroform, dichloromethane, dibromochloromethane and bromofor...The chlorination process is one of the water treatment method used for the disinfection of water. The disinfection by products are trihalomethanes such as chloroform, dichloromethane, dibromochloromethane and bromoform. A headspace solid-phase microextraction method has been developed for determination oftrihalomethanes in water samples. The experimental parameters such as the stirring rate, extraction time, extraction temperature and desorption time were investigated. The linearity, detection limits and percentage recovery were evaluated. The optimum conditions were stirring rate 800 rpm/min, extraction time 6 min, extraction temperature 20 ~C, desorption time 2.5 min and desorption temperature 220 ~C. The detection limits were 0.01 ~g/L and the recoveries were in the range of 86-110 %, The proposed method was successfully applied to determination of THM4 in tap water samples. The THM4 contents were varied depending on the sample sites and the season. The total THM4 contents in cool, summer and rainy season were in the range of 27.58-41.89, 32.06-60.73 and 46.26-69.87 p.g/L, respectively. Confirmation of the detected compounds in water samples were performed by gas chromatograph-mass spectrometer. The mass spectra of the target compounds in water samples is in good agreement with trihalomethanes standard spectra.展开更多
An in-situ GC-ECD system was used to measure halocarbons at Shangdianzi (SDZ) GAW regional station. In this paper, we reported observational results of atmospheric CFC- 11 (CCI3F) mixing ratios from April 2007 to ...An in-situ GC-ECD system was used to measure halocarbons at Shangdianzi (SDZ) GAW regional station. In this paper, we reported observational results of atmospheric CFC- 11 (CCI3F) mixing ratios from April 2007 to March 2008. The CFC- 11 time series showed large variability. Approximately 62% observed values were filtered as non-background data. The median, 10% and 90% percentiles of CFC-11 background mixing ratios were 245.4 ppt (10-12 mol/mol), 244.6 ppt and 246.1 ppt, respectively; whereas those of non-background CFC- 11 mixing ratios were 254.7, 246.6 and 272.1 ppt, respectively. Significant differences in background and non-background CFC-11 mixing ratios were observed between summer and autumn, mainly because of the CFC-11 stored in loam being prone to atmospheric release in hot seasons. Comparison of tile SDZ data with the five AGAGE stations suggested agreement with mid-high latitude Northern Hemisphere stations MHD, THD and RPB. The SDZ data were higher than that of Southern Hemisphere stations CGO and SMO. Higher CFC-11 mixing ratios measured in different seasons were always associated with winds from the W-WSW-SW sector, indicating that the airflow coming from this wind sector has a positive contribution to CFC- 11 concentrations. The CFC-11 mixing ratios were higher in autumn and summer than in spring and winter, in which its mixing ratios were very close to the atmospheric background level. This was happened especially when airflow originated from the NNE-NE-ENE-E sector, indicating the air masses coming from these wind directions was relatively clean.展开更多
基金Supported by the National High Technology Research and Development Program of China (2009AA063901)the Special Funds for Technological Development of Research Institutes from the Ministry of Science and Technology of China(2010EG111022, 2011EG111307)+1 种基金the Budding Program (2011A-12-L)the Program for Innovative Research Team(IG201204N) of Beijing Academy of Science and Technology
文摘Conventional jar tests and on-line size monitoring were used to investigate the effects of slow-mixing intensity and duration on residual turbidity and floc size during charge neutralization coagulation and sweep floc- culation with polyaluminum chloride. The compensatory effect of slow-mixing on coagulation performance fol- low!ng inadequate_or excessive rapid-mi_xing was also examined. It is found that slowTmixing intensity has a more marked positive ettect on charge neutralization coas;ulatlon tlaan on sweep tlocculatlon. llle optimal root-mean- square velocity gradient, G, for slow-mixing is 15 s-' for both coagulation mechanisms, and charge neutralization coagulation requires a longer slow-mixing duration. The optimal slow-mixing duration, based on residual turbidity,is longer than the time to tbrm the largest mean Ilocs. The optimal product of G and mixing duration, GT, lbr slow-mixing during charge neutralization coagulation (13500) are higher than that during sweep flocculation (4500) and both are less than the range of values recommended by the American Water Works Association (24000-84000).The optimal GT value under various slow-mixing conditions increases with G. Appropriate extension'of slow-mixing duration during charge neutralization coagulation can improve coagulation performance after an inadequate or excessive rapid-mixing duration, but during sweep flocculation, appropriate shortening of slow-mixing duration after an excessive rapid-mixing or appropriate extension of slow-mixing duration after an inadequate rapid-mixing is favorable.
基金Supported by the National Basic Research Program of China(2009CB219901)
文摘At relatively high cellulose mass concentrations(8%,10%,and 12%),homogeneous acetylation of cellulose was carried out in an ionic liquid,1-allyl-3-methylimidazolium chloride(AmimCl).Without using any catalyst,cellulose acetates(CAs)with the degree of substitution(DS)in a range from 0.4 to 3.0 were synthesized in one-step.The effects of reaction time,temperature and molar ratio of acetic anhydride/anhydroglucose unit(AGU) in cellulose on DS value of CAs were investigated.The synthesized CAs were characterized by means of FT-IR, NMR,and solubility,mechanical and thermal tests.After the acetylation,the used ionic liquid AmimCl was easily recycled and reused.This study shows the potential of the homogeneous acetylation of cellulose at relatively high concentrations in ionic liquids in future industrial applications.
基金This project owes gratitude to the Science and Technology Project (No.2008-K4-27) of Ministry of Housing and Urban-Rural Developmentthe"Tralented Personnel Nurturing in Six Fundamental Fields"Project of Jiangsu Province and"Qing-Lan Project"+2 种基金the Science and Technology Project of Jiangsu Bureau of Construction and Supervision (No.JG2007-13)the Science and Technology Planning Project of Xuzhou City(No.XJ08077)the Scientific Research Project of Xuzhou Institute of Technology(No.XKY2008225).
文摘This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand containing concrete was used for the trials.An analysis of chloride ion diffusion coefficients at different factor levels was performed.A predictive model of chloride ion diffusion in concrete is developed through regression analysis.The experimental results show that when the water/cement ratio varies from 0.45 to 0.60,and the water consumption per cubic meter varies from 185 to 215 kg,and the curing time varies from 30 to 180 d then the size of the effects fall in the order(most significant first): curing time,type of sand,water consumption per cubic meter,and water/cement ratio.Chloride ion penetration is reduced,and better durability of the concrete is observed,with longer curing times,less water consumption per cubic meter,and a smaller water/cement ratio.
文摘The effects of various parameters on the removal rate of CN were discussed in the paper. The results showed that under the conditions of 30℃ pH = 3.0, Fe2+ dosage was 80 mg/L, the NaCIO concentration of 0.10 mol/L, reaction time in 60 min, Fe2+ has a satisfactory catalytic activation, and the removal rate of CN was about 37.89%.
文摘SCC (stress corrosion cracking) is environmentally well-known as a failure caused by exposure to a corroding while under a sustained tensile stress. SCC is most often rapid, unpredictable. Failure can occur in a short time as a few hours or take years and decades to happen. Most alloys are liable to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are common to perform poorly. SCC of austenitic stainless steels of types 316 was investigated as a function of applied stress at room temperature in sodium chloride solutions using a constant load method. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of notched specimen. The stress depends on fracture appearance and parameters of time to cracking, and cracking growth. The results explained in terms of comparison between the two concentrations of sodium chloride solutions.
文摘The effectiveness of chlorine and ultraviolet light at inactivating indigenous microbes in primary treated wastewater was examined in this study. The inactivation rates for somatic colipahge and F-specific bacteriophage were less than 2.5 log and 1 log, respectively, at either free chlorine doses of 6, 15 mg/L and 30 mg/L after 30 minutes contact time. However, E. coli and total coliforms were susceptible to chlorination and inactivated more than 4 log within first 15 minutes of contact time at any chlorine dosage tested. In contrast, the inactivation of bacteriophage was increased when increasing UV fluence. At the same disinfection effectiveness against E. coli, UV disinfection was more effective than chlorination against F-specific bacteriophages.
文摘The effect of NaCI and proline on somatic embryos formation and germination of date palm (Phoenix dactylifera L.) cv. Barhee was studied. Quarters of shoot tips were cultured on MS solid growth media supplied with different concentrations of salt (NaCI) (0.5%, 1%, 1.5%, 2%, 2.5% and 3%, respectively) and proline (25, 50 and 75 mg L1) either individually or in combination. Results showed that the addition of NaC1 (starting at 1%) caused a significant increase in the cylindrical embryos formation time, while their lengths and fresh weights were decreased at salt concentrations (0.5% and 2%). No significant effect was noticed on the formation time by using proline except at concentration of 25 mg L^-1 which caused an increase in their lengths and fresh weights. The interaction between all salt concentrations and proline (25 mg LL) caused a significant increase in the formation time as well as in their lengths and fresh weights. The addition of NaC1 to the media caused a significant effect on the germination time and a reduction on the percentages of somatic embryo germination starting at 2% and the following ones. A reduction in the lengths of radicals and the plumules of the formed embryos was noticed at 1.5% NaCI. Proline addition reduced the initial time and increased the germination percentages as well as the lengths of radicals and plumules. The interaction between salt and proline treatments caused a significant reduction in the initiation time and an increase in the germination percentages and lengths of radicals and plumules.
文摘The chlorination process is one of the water treatment method used for the disinfection of water. The disinfection by products are trihalomethanes such as chloroform, dichloromethane, dibromochloromethane and bromoform. A headspace solid-phase microextraction method has been developed for determination oftrihalomethanes in water samples. The experimental parameters such as the stirring rate, extraction time, extraction temperature and desorption time were investigated. The linearity, detection limits and percentage recovery were evaluated. The optimum conditions were stirring rate 800 rpm/min, extraction time 6 min, extraction temperature 20 ~C, desorption time 2.5 min and desorption temperature 220 ~C. The detection limits were 0.01 ~g/L and the recoveries were in the range of 86-110 %, The proposed method was successfully applied to determination of THM4 in tap water samples. The THM4 contents were varied depending on the sample sites and the season. The total THM4 contents in cool, summer and rainy season were in the range of 27.58-41.89, 32.06-60.73 and 46.26-69.87 p.g/L, respectively. Confirmation of the detected compounds in water samples were performed by gas chromatograph-mass spectrometer. The mass spectra of the target compounds in water samples is in good agreement with trihalomethanes standard spectra.
基金supported by Non-profit Research Project to Serve the Public Interest (Grant No. GYHY200806026)International S&T Cooperation Program of MOST (Grant No. 2007DFA20650)Research Fund for Returned Overseas Chinese Scholars of the State Education Ministry (Grant No. [2009]1108)
文摘An in-situ GC-ECD system was used to measure halocarbons at Shangdianzi (SDZ) GAW regional station. In this paper, we reported observational results of atmospheric CFC- 11 (CCI3F) mixing ratios from April 2007 to March 2008. The CFC- 11 time series showed large variability. Approximately 62% observed values were filtered as non-background data. The median, 10% and 90% percentiles of CFC-11 background mixing ratios were 245.4 ppt (10-12 mol/mol), 244.6 ppt and 246.1 ppt, respectively; whereas those of non-background CFC- 11 mixing ratios were 254.7, 246.6 and 272.1 ppt, respectively. Significant differences in background and non-background CFC-11 mixing ratios were observed between summer and autumn, mainly because of the CFC-11 stored in loam being prone to atmospheric release in hot seasons. Comparison of tile SDZ data with the five AGAGE stations suggested agreement with mid-high latitude Northern Hemisphere stations MHD, THD and RPB. The SDZ data were higher than that of Southern Hemisphere stations CGO and SMO. Higher CFC-11 mixing ratios measured in different seasons were always associated with winds from the W-WSW-SW sector, indicating that the airflow coming from this wind sector has a positive contribution to CFC- 11 concentrations. The CFC-11 mixing ratios were higher in autumn and summer than in spring and winter, in which its mixing ratios were very close to the atmospheric background level. This was happened especially when airflow originated from the NNE-NE-ENE-E sector, indicating the air masses coming from these wind directions was relatively clean.