A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roastin...A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roasting time and NaCl content on the volatilization rates of gold and zinc were investigated.The reaction mechanism and the phase transition process were also analyzed by means of SEM,EDS and XRD.The results demonstrated that under the optimal conditions of NaCl content of 10%,roasting temperature of 800℃,roasting time of 4 h and gas flow rate of 1 L/min,the rates of gold and zinc were 92%and 92.56%,respectively.During low-temperature chlorination roasting stage,a certain content of sulfur was beneficial to the chlorination reactions of gold and zinc;and during high-temperature chlorination roasting stage,the crystal structure of vanadium-bearing mica was destroyed,and the vanadium-containing oxides were beneficial to the chlorinating volatilization of gold and zinc.Eventually,the chlorinated volatiles of gold and zinc could be recovered by alkaline solution.展开更多
To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore,chlorination roasting with NH;Cl followed by a water leaching process was investigated.The results show that 98.4%Ni and 98.5%Cu can be sync...To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore,chlorination roasting with NH;Cl followed by a water leaching process was investigated.The results show that 98.4%Ni and 98.5%Cu can be synchronously extracted when the ore particle size is 75-80μm,the roasting time is 2 h,the mass ratio of NH;Cl to ore is 1.6:1 and the roasting temperature is 550°C.The evolution behavior of various minerals was elucidated using X-ray diffraction(XRD)coupled with scanning electron microscopy(SEM).The kinetics of the chlorination process based on the differential thermal and thermogravimetric analysis(DTA-TG)data was analyzed by Kissinger method and Flynn-Wall-Ozawa(FWO)method.The chlorination process of low-grade nickel-copper sulfide ore mainly contains two stages:the decomposition of NH;Cl and the chlorination of ore.The maximum apparent activation energies(Ea)at two stages are determined to be 114.8 and 144.6 kJ/mol,respectively.The condensed product of exhaust gas is determined to be ammonium chloride,which can be recycled as the reactant again,making the process economic and clean.展开更多
In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduc...In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduced to investigate FeCl3 leaching of nickel sulfide concentrate. Some factors influencing the electrogenerative leaching, such as electrode structure, temperature and solution concentration were studied. The results show that a certain quantity of electrical energy accompanied with the leached products can be acquired in the electrogenerative leaching process. The output current and power increase with the addition of acetylene black to the electrode. Varying the components of electrode just affects the polarization degree of anode. Increasing FeCl3 concentration results in a sharp increase in the output of the leaching cell when c(FeCl3) is less than 0.1 mol/L. The optimum value of NaCl concentration for electrogenerative leaching nickel sulfide concentrate with FeCl3 is 3.0 mol/L. Temperature influences electrogenerative leaching by affecting anodic and cathodic polarization simultaneously. The apparent activation energy is determined to be 34.63 kJ/mol in the range of 298 K to 322 K. The leaching rate of Ni2+ is 29.3% after FeCl3 electrogenerative leaching of nickel sulfide concentrate for 620 min with a filter bag electrode.展开更多
The extraction of potassium from K-feldspar via a calcium chloride calcination route was studied with a focus on the effects of the calcination atmosphere, calcination temperature and time, mass ratio of CaCl2 to K-fe...The extraction of potassium from K-feldspar via a calcium chloride calcination route was studied with a focus on the effects of the calcination atmosphere, calcination temperature and time, mass ratio of CaCl2 to K-feldspar ore and particle size of the K-feldspar ore. The results demonstrated that a competing high-temperature hydrolysis reaction of calcium chloride with moisture in a damp atmosphere occurred concurrently with the conversion reaction of K-feldspar with CaCl2, thus reducing the amount of potassium extracted. The conversion reaction started at approximately 600 °C and accelerated with increasing temperature. When the temperature rose above 900 °C, the extraction of potassium gradually decreased due to the volatilization of the product, KCl.As much as approximately 41% of the potassium was volatilized in 40 min at 1100 °C. The mass ratio of CaCl2/K-feldspar ore significantly affected the extraction. At a mass ratio of 1.15 and 900 °C, the potassium extraction reached 91% in 40 min, while the extraction was reduced to only 22% at the theoretical mass ratio of 0.2. Optimal process conditions are as follows: ore particle size of 50–75 μm, tablet forming pressure of 3 MPa, dry nitrogen atmosphere, mass ratio of CaCl2/ore 1.15:1, calcination temperature of 900 °C, and calcination time of 40 min.The XRD analysis revealed that a complex phase transition of the product SiO2 was also accompanied by the conversion reaction of K-feldspar/CaCl2. The SiO2 product formed at the initial stage was in the quartz phase at 900 °C and was gradually transformed into cristobalite after 30 min.展开更多
A dual cell system was used to study the influence of chloride ions on the electrogenerative leaching of sulfide minerals. The results show that the influences of chloride ions on a series of electrogenerative leachin...A dual cell system was used to study the influence of chloride ions on the electrogenerative leaching of sulfide minerals. The results show that the influences of chloride ions on a series of electrogenerative leaching system are similar, and chlorine ion is involved in the electrogenerative leaching process of sulfide minerals directly. The output power increases with the increase of Cl^- concentration. The influence on the electrogenerative leaching rate decreases when the Cl^- concentration reaches a certain value. The mechanisms of anodic reaction are deduced based on the reasonable hypothesis, and kinetic equations with respect to chlorine ions for each sulfide mineral are obtained. The kinetic equations show that when concentration of Cl^- is relatively low, the electrogenerative leaching rates are predicted to have 2/5,3/7,1/3 and 1/3 order dependence on Cl^- concentration for chalcopyrite concentrate,nickel concentrate, sphalerite and galena. As concentration of Cl^- increases, the correlative dependence of electrogenerative leaching rate on concentration of Cl^- becomes weak.展开更多
Flotation indexes gradually decrease with the increase of cycle time of the backwater in bauxite floatation,and discharge of backwater brings environmental risk.In this study,methods such as Fenton-oxidation,adsorptio...Flotation indexes gradually decrease with the increase of cycle time of the backwater in bauxite floatation,and discharge of backwater brings environmental risk.In this study,methods such as Fenton-oxidation,adsorption and coagulation were used in the treatment of backwater,the flotation indexes were checked after backwater treatments,and Box-Behnken design(BBD)was used in the optimization of the main operating parameters.The results reveal that flotation indexes are effectively improved after coagulation treatment by polyaluminum ferric chloride(PAFC).The optimum parameters predicted by BBD are pH 7.55,1.09 g/L PAFC dosage and temperature of 25℃.Under these optimum conditions,a maximum recovery of Al2O3 of 82.83%and a minimum A/S of 1.30 of tailings are gained,while the deviations are less than 3%from the predicted values.These findings encourage the application of BBD for the optimization of critical parameters in backwater treatment.展开更多
The dissolution of molybdenite concentrate in NaC1 electrolyte was investigated. The results show that the dissolution rate increases with the increase in liquid-to-solid ratio, stirring speed, NaCl concentration and ...The dissolution of molybdenite concentrate in NaC1 electrolyte was investigated. The results show that the dissolution rate increases with the increase in liquid-to-solid ratio, stirring speed, NaCl concentration and temperature. When the liquid-to-solid ratio is 30:1, stirring speed is 400 r/min, concentration of NaCI is 4 mol/L at pH=9 and room temperature, the leaching efficiency of molybdenite concentrate will reach 99.5% in 240 min. Molybdenite concentrate cannot be electro-oxidized directly on the anode. The kinetic studies show that the dissolution of molybdenite concentrate is represented by shrinking core model with diffusion through a porous product layer of element sulfur, and the apparent activation energy for the dissolution reaction is 8.56 kJ/mol.展开更多
Sodium hypochlorite was used to treat the standard molybdenum concentrates; the oxidization conditions for sodium hypochlorite were investigated, and the electro-oxidation process was performed. The results indicate t...Sodium hypochlorite was used to treat the standard molybdenum concentrates; the oxidization conditions for sodium hypochlorite were investigated, and the electro-oxidation process was performed. The results indicate that in the suitable conditions, such as temperature around 25℃, NaCl concentration 4.0mol/L, mass ratio of ore slurry liquid to solid (mL/mS) 20, electric charge per gram Mo 0.522C, pH value of original slurry 8, anodic current density 700A·m-2 (cell potential 2.72.9V), the Mo leaching rate and the current efficiency reach 98% and 36%, respectively. In order to overcome some shortages of the electro-oxidation process, such as low current efficiency, low Mo concentration in the leaching solution, ultrasonic was adopted to intensify the leaching process. The results show that the Mo leaching rate exceeds 98%, current efficiency increases from 36% to 50% and the Mo concentration in the leaching solution reaches about 60g/L at low mL/mS of 8 and low electric charge of 0.373C.展开更多
The co-extraction behavior of galena-pyrolusite in a sodium chloride solution and the electrochemical mechanism of this process were investigated,and some factors affecting the leaching rate of Pb and Mn were optimize...The co-extraction behavior of galena-pyrolusite in a sodium chloride solution and the electrochemical mechanism of this process were investigated,and some factors affecting the leaching rate of Pb and Mn were optimized.The results show that all the factors such as the concentration of NaCl,HCl and pyrolusite ore,reaction time,temperature,adding times of HCl,affect the leaching rate of Pb.The main affecting factors are the concentration of NaCl,reaction time and temperature.The Tafel polarization curves and EIS plots of the galena and pyrolusite in the NaCl solution demonstrate that during the oxidation process of galena mineral electrode,film forms on the galena surface,which prevents galena from deeper oxidation.However,the film resistance can be greatly reduced in the presence of sodium chloride,thus promoting the reaction rate of galena.展开更多
Vanadium extraction of vanadium-bearing titanomagnetite was investigated by selective chlorination. Thermodynamics analyses on the interactive reactions among related species in the system were made before the experim...Vanadium extraction of vanadium-bearing titanomagnetite was investigated by selective chlorination. Thermodynamics analyses on the interactive reactions among related species in the system were made before the experiments. Some fundamental experiments for extracting vanadium by FeClx as chlorinating agent were conducted over the temperature range of 900-1300 K under air or oxygen atmosphere. The results show that vanadium can be extracted by the selective chlorination, using FeClx, based on thermodynamic analysis and experiment. Vanadium extraction ratio first increases with the increase of temperature, and then decreases with the increase of temperature over the range of 900-1300 K under air or oxygen atmosphere. The higher molar ratio of FeCI3 to oxides (nchl:noxd) reacting with FeC13, the higher ratio of vanadium extraction. Under oxygen atmosphere, the vanadium extraction ratio is up to 32% at 1100 K for 2 h by using FeCI3 as chlorinating agent.展开更多
There are sulfate and chloride ions corrosion and carbonation to concrete in coal mine. Based on taking test of accelerated carbonation, corrosion of 3.5% weight of NaCl solution and 5% weight of Na2SO4 solution of co...There are sulfate and chloride ions corrosion and carbonation to concrete in coal mine. Based on taking test of accelerated carbonation, corrosion of 3.5% weight of NaCl solution and 5% weight of Na2SO4 solution of coal mine concretes, durability of con- cretes which include spray concrete of C20,high performance concretes of C30 and C50 and effect of fly ash on durability have been studied. Results suggest that the coal mineral high performance concretes show good resistance capacities of carbonation, sulfate and chloride corrosion to meet the coal mine construction. And the higher the strength grade is, the better the resistance capacity of corrosion of carbonation is, chloride and sulfate. Moreover, fly ash improves resistance capacity of high performance concrete(HPC) to chloride and sulfate but decreases the resistance capacity of C30’s to carbonation and average dynamic modulus.展开更多
The leaching kinetics of Tang-dan refractory low grade complex copper ore was investigated in ammonia-ammonium chloride solution.The concentration of ammonia and ammonium chloride,the ore particle size,the solid-to-li...The leaching kinetics of Tang-dan refractory low grade complex copper ore was investigated in ammonia-ammonium chloride solution.The concentration of ammonia and ammonium chloride,the ore particle size,the solid-to-liquid ratio and the temperature were chosen as parameters in the experiments.The results show that temperature,concentration of ammonia and ammonium chloride have favorable influence on the leaching rate of copper oxide ores.But,leaching rate decreases with increasing particle size and solid-to-liquid ratio.The leaching process is controlled by the diffusion of the lixiviant and the activation energy is determined to be 23.279 kJ/mol.An equation was also proposed to describe the leaching kinetics.展开更多
The effects of surfactant on the solvent extraction in leachingsphalerite were investigated. It is found that sodium dodecylsulfonate is the effective surfactant in improving the zinc recoveryfrom sphalerite in the aq...The effects of surfactant on the solvent extraction in leachingsphalerite were investigated. It is found that sodium dodecylsulfonate is the effective surfactant in improving the zinc recoveryfrom sphalerite in the aqueous FeCl_3-HCl-tetrachloroethylene system.Through the measurements of surface tension and viscosity of thesphalerite Slurry modified with different surfactants, it isconcluded that sodium dodecyl sulfonate in the concentration rang Of0.05 to 0.2 g·L^-1 can improve the viscosity of sphalerite slurry inthe water, decrease the surface tension of Leaching solution, preventthe aggregation of ore particles, and give very high zinc extraction.展开更多
The flotation separation of scheelite from fluorite and calcite using dodecyltrimethylammonium chloride (DTAC), dodecyldimethylbenzylammonium chloride (DDBAC), or didodecyldimethylammonium chloride (DDDAC) as th...The flotation separation of scheelite from fluorite and calcite using dodecyltrimethylammonium chloride (DTAC), dodecyldimethylbenzylammonium chloride (DDBAC), or didodecyldimethylammonium chloride (DDDAC) as the collector has been investigated. The results show that the selectivity of these collectors for these three calcareous minerals falls in the order: DDDAC 〉 DDBAC 〉 DTAC. A significantly different flotation response of scheelite compared to the other two calcareous minerals was observed over the pH range from 7 to 8 for DDDAC as the collector. A concentrate containing 41.40% W03 could be produced from a feed mixture containing 23.22% WO3 at the DDDAC concentration of 4.0× 10^-4 mol/L. The WO3 recovery was 92.92% under these conditions. The results of zeta potential measurements suggest that electrostatic interactions are the main forces between DDDAC and the minerals. When the concentration of DDDAC is from 2× 10^-4 to 4×10-3 mol/L large differences in adsorption density, and adsorption kinetics, of DDDAC onto scheelite, calcite, and fluorite provide desirable conditions for achieving high selectivity.展开更多
The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypoc...The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.展开更多
文摘A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roasting time and NaCl content on the volatilization rates of gold and zinc were investigated.The reaction mechanism and the phase transition process were also analyzed by means of SEM,EDS and XRD.The results demonstrated that under the optimal conditions of NaCl content of 10%,roasting temperature of 800℃,roasting time of 4 h and gas flow rate of 1 L/min,the rates of gold and zinc were 92%and 92.56%,respectively.During low-temperature chlorination roasting stage,a certain content of sulfur was beneficial to the chlorination reactions of gold and zinc;and during high-temperature chlorination roasting stage,the crystal structure of vanadium-bearing mica was destroyed,and the vanadium-containing oxides were beneficial to the chlorinating volatilization of gold and zinc.Eventually,the chlorinated volatiles of gold and zinc could be recovered by alkaline solution.
基金the National Natural Science Foundation of China(No.52074069)the Natural Science Foundation of Hebei Province(No.E2020501022)+1 种基金the National Basic Research Program of China(No.2014CB643405)the Fundamental Research Funds for the Central Universities,China(No.N2223027)。
文摘To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore,chlorination roasting with NH;Cl followed by a water leaching process was investigated.The results show that 98.4%Ni and 98.5%Cu can be synchronously extracted when the ore particle size is 75-80μm,the roasting time is 2 h,the mass ratio of NH;Cl to ore is 1.6:1 and the roasting temperature is 550°C.The evolution behavior of various minerals was elucidated using X-ray diffraction(XRD)coupled with scanning electron microscopy(SEM).The kinetics of the chlorination process based on the differential thermal and thermogravimetric analysis(DTA-TG)data was analyzed by Kissinger method and Flynn-Wall-Ozawa(FWO)method.The chlorination process of low-grade nickel-copper sulfide ore mainly contains two stages:the decomposition of NH;Cl and the chlorination of ore.The maximum apparent activation energies(Ea)at two stages are determined to be 114.8 and 144.6 kJ/mol,respectively.The condensed product of exhaust gas is determined to be ammonium chloride,which can be recycled as the reactant again,making the process economic and clean.
文摘In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduced to investigate FeCl3 leaching of nickel sulfide concentrate. Some factors influencing the electrogenerative leaching, such as electrode structure, temperature and solution concentration were studied. The results show that a certain quantity of electrical energy accompanied with the leached products can be acquired in the electrogenerative leaching process. The output current and power increase with the addition of acetylene black to the electrode. Varying the components of electrode just affects the polarization degree of anode. Increasing FeCl3 concentration results in a sharp increase in the output of the leaching cell when c(FeCl3) is less than 0.1 mol/L. The optimum value of NaCl concentration for electrogenerative leaching nickel sulfide concentrate with FeCl3 is 3.0 mol/L. Temperature influences electrogenerative leaching by affecting anodic and cathodic polarization simultaneously. The apparent activation energy is determined to be 34.63 kJ/mol in the range of 298 K to 322 K. The leaching rate of Ni2+ is 29.3% after FeCl3 electrogenerative leaching of nickel sulfide concentrate for 620 min with a filter bag electrode.
基金Supported by the Ministry of Science and Technology(State Key Research Plan2013BAC12B03)the National Natural Science Foundation of China(21236004,21336004)
文摘The extraction of potassium from K-feldspar via a calcium chloride calcination route was studied with a focus on the effects of the calcination atmosphere, calcination temperature and time, mass ratio of CaCl2 to K-feldspar ore and particle size of the K-feldspar ore. The results demonstrated that a competing high-temperature hydrolysis reaction of calcium chloride with moisture in a damp atmosphere occurred concurrently with the conversion reaction of K-feldspar with CaCl2, thus reducing the amount of potassium extracted. The conversion reaction started at approximately 600 °C and accelerated with increasing temperature. When the temperature rose above 900 °C, the extraction of potassium gradually decreased due to the volatilization of the product, KCl.As much as approximately 41% of the potassium was volatilized in 40 min at 1100 °C. The mass ratio of CaCl2/K-feldspar ore significantly affected the extraction. At a mass ratio of 1.15 and 900 °C, the potassium extraction reached 91% in 40 min, while the extraction was reduced to only 22% at the theoretical mass ratio of 0.2. Optimal process conditions are as follows: ore particle size of 50–75 μm, tablet forming pressure of 3 MPa, dry nitrogen atmosphere, mass ratio of CaCl2/ore 1.15:1, calcination temperature of 900 °C, and calcination time of 40 min.The XRD analysis revealed that a complex phase transition of the product SiO2 was also accompanied by the conversion reaction of K-feldspar/CaCl2. The SiO2 product formed at the initial stage was in the quartz phase at 900 °C and was gradually transformed into cristobalite after 30 min.
基金Project(50374077) supported by the National Natural Science Foundation of China
文摘A dual cell system was used to study the influence of chloride ions on the electrogenerative leaching of sulfide minerals. The results show that the influences of chloride ions on a series of electrogenerative leaching system are similar, and chlorine ion is involved in the electrogenerative leaching process of sulfide minerals directly. The output power increases with the increase of Cl^- concentration. The influence on the electrogenerative leaching rate decreases when the Cl^- concentration reaches a certain value. The mechanisms of anodic reaction are deduced based on the reasonable hypothesis, and kinetic equations with respect to chlorine ions for each sulfide mineral are obtained. The kinetic equations show that when concentration of Cl^- is relatively low, the electrogenerative leaching rates are predicted to have 2/5,3/7,1/3 and 1/3 order dependence on Cl^- concentration for chalcopyrite concentrate,nickel concentrate, sphalerite and galena. As concentration of Cl^- increases, the correlative dependence of electrogenerative leaching rate on concentration of Cl^- becomes weak.
基金Project(1053320170205)supported by the Research and Innovation Project of Graduate Students of Central South University,ChinaProject(502211704)supported by the Fundamental Research Funds for the Central Universities,China+3 种基金Project(SKL-SPM-201809)supported by the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals,ChinaProject(SKLAM005-2016)supported by the State Key Laboratory of Applied Microbiology Southern ChinaProjects(51320105006,51504106,51871250)supported by the National Natural Science Foundation of ChinaProject(2015FB204)supported by the Science and Technology Project of Yunnan Province,China
文摘Flotation indexes gradually decrease with the increase of cycle time of the backwater in bauxite floatation,and discharge of backwater brings environmental risk.In this study,methods such as Fenton-oxidation,adsorption and coagulation were used in the treatment of backwater,the flotation indexes were checked after backwater treatments,and Box-Behnken design(BBD)was used in the optimization of the main operating parameters.The results reveal that flotation indexes are effectively improved after coagulation treatment by polyaluminum ferric chloride(PAFC).The optimum parameters predicted by BBD are pH 7.55,1.09 g/L PAFC dosage and temperature of 25℃.Under these optimum conditions,a maximum recovery of Al2O3 of 82.83%and a minimum A/S of 1.30 of tailings are gained,while the deviations are less than 3%from the predicted values.These findings encourage the application of BBD for the optimization of critical parameters in backwater treatment.
基金Project(2007BAB22B01) supported by the 11th Five-Year Plan of National Science and Technology of China Project(50704036) supported by the National Natural Science Foundation of China
文摘The dissolution of molybdenite concentrate in NaC1 electrolyte was investigated. The results show that the dissolution rate increases with the increase in liquid-to-solid ratio, stirring speed, NaCl concentration and temperature. When the liquid-to-solid ratio is 30:1, stirring speed is 400 r/min, concentration of NaCI is 4 mol/L at pH=9 and room temperature, the leaching efficiency of molybdenite concentrate will reach 99.5% in 240 min. Molybdenite concentrate cannot be electro-oxidized directly on the anode. The kinetic studies show that the dissolution of molybdenite concentrate is represented by shrinking core model with diffusion through a porous product layer of element sulfur, and the apparent activation energy for the dissolution reaction is 8.56 kJ/mol.
文摘Sodium hypochlorite was used to treat the standard molybdenum concentrates; the oxidization conditions for sodium hypochlorite were investigated, and the electro-oxidation process was performed. The results indicate that in the suitable conditions, such as temperature around 25℃, NaCl concentration 4.0mol/L, mass ratio of ore slurry liquid to solid (mL/mS) 20, electric charge per gram Mo 0.522C, pH value of original slurry 8, anodic current density 700A·m-2 (cell potential 2.72.9V), the Mo leaching rate and the current efficiency reach 98% and 36%, respectively. In order to overcome some shortages of the electro-oxidation process, such as low current efficiency, low Mo concentration in the leaching solution, ultrasonic was adopted to intensify the leaching process. The results show that the Mo leaching rate exceeds 98%, current efficiency increases from 36% to 50% and the Mo concentration in the leaching solution reaches about 60g/L at low mL/mS of 8 and low electric charge of 0.373C.
基金Project(50774094) supported by the National Natural Science Foundation of China
文摘The co-extraction behavior of galena-pyrolusite in a sodium chloride solution and the electrochemical mechanism of this process were investigated,and some factors affecting the leaching rate of Pb and Mn were optimized.The results show that all the factors such as the concentration of NaCl,HCl and pyrolusite ore,reaction time,temperature,adding times of HCl,affect the leaching rate of Pb.The main affecting factors are the concentration of NaCl,reaction time and temperature.The Tafel polarization curves and EIS plots of the galena and pyrolusite in the NaCl solution demonstrate that during the oxidation process of galena mineral electrode,film forms on the galena surface,which prevents galena from deeper oxidation.However,the film resistance can be greatly reduced in the presence of sodium chloride,thus promoting the reaction rate of galena.
基金Projects(51374061,51074040)supported by the National Natural Science Foundation of ChinaProject(201202064)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(N120402004)supported by the Fundamental Research Funds for the Central Universities,China
文摘Vanadium extraction of vanadium-bearing titanomagnetite was investigated by selective chlorination. Thermodynamics analyses on the interactive reactions among related species in the system were made before the experiments. Some fundamental experiments for extracting vanadium by FeClx as chlorinating agent were conducted over the temperature range of 900-1300 K under air or oxygen atmosphere. The results show that vanadium can be extracted by the selective chlorination, using FeClx, based on thermodynamic analysis and experiment. Vanadium extraction ratio first increases with the increase of temperature, and then decreases with the increase of temperature over the range of 900-1300 K under air or oxygen atmosphere. The higher molar ratio of FeCI3 to oxides (nchl:noxd) reacting with FeC13, the higher ratio of vanadium extraction. Under oxygen atmosphere, the vanadium extraction ratio is up to 32% at 1100 K for 2 h by using FeCI3 as chlorinating agent.
基金Supported by the National (863) Plan Fund Project China (2003AA33X100)
文摘There are sulfate and chloride ions corrosion and carbonation to concrete in coal mine. Based on taking test of accelerated carbonation, corrosion of 3.5% weight of NaCl solution and 5% weight of Na2SO4 solution of coal mine concretes, durability of con- cretes which include spray concrete of C20,high performance concretes of C30 and C50 and effect of fly ash on durability have been studied. Results suggest that the coal mineral high performance concretes show good resistance capacities of carbonation, sulfate and chloride corrosion to meet the coal mine construction. And the higher the strength grade is, the better the resistance capacity of corrosion of carbonation is, chloride and sulfate. Moreover, fly ash improves resistance capacity of high performance concrete(HPC) to chloride and sulfate but decreases the resistance capacity of C30’s to carbonation and average dynamic modulus.
基金Projects(2007CB613604) supported by the National Basic Research Program of ChinaProject(50674104) supported by the National Natural Science Foundation of China
文摘The leaching kinetics of Tang-dan refractory low grade complex copper ore was investigated in ammonia-ammonium chloride solution.The concentration of ammonia and ammonium chloride,the ore particle size,the solid-to-liquid ratio and the temperature were chosen as parameters in the experiments.The results show that temperature,concentration of ammonia and ammonium chloride have favorable influence on the leaching rate of copper oxide ores.But,leaching rate decreases with increasing particle size and solid-to-liquid ratio.The leaching process is controlled by the diffusion of the lixiviant and the activation energy is determined to be 23.279 kJ/mol.An equation was also proposed to describe the leaching kinetics.
基金Supported by the National Natural Science Foundation of China (No. 29836130).
文摘The effects of surfactant on the solvent extraction in leachingsphalerite were investigated. It is found that sodium dodecylsulfonate is the effective surfactant in improving the zinc recoveryfrom sphalerite in the aqueous FeCl_3-HCl-tetrachloroethylene system.Through the measurements of surface tension and viscosity of thesphalerite Slurry modified with different surfactants, it isconcluded that sodium dodecyl sulfonate in the concentration rang Of0.05 to 0.2 g·L^-1 can improve the viscosity of sphalerite slurry inthe water, decrease the surface tension of Leaching solution, preventthe aggregation of ore particles, and give very high zinc extraction.
基金supported by the State Key Program of National Natural Science Foundation of China (No. 50834006)
文摘The flotation separation of scheelite from fluorite and calcite using dodecyltrimethylammonium chloride (DTAC), dodecyldimethylbenzylammonium chloride (DDBAC), or didodecyldimethylammonium chloride (DDDAC) as the collector has been investigated. The results show that the selectivity of these collectors for these three calcareous minerals falls in the order: DDDAC 〉 DDBAC 〉 DTAC. A significantly different flotation response of scheelite compared to the other two calcareous minerals was observed over the pH range from 7 to 8 for DDDAC as the collector. A concentrate containing 41.40% W03 could be produced from a feed mixture containing 23.22% WO3 at the DDDAC concentration of 4.0× 10^-4 mol/L. The WO3 recovery was 92.92% under these conditions. The results of zeta potential measurements suggest that electrostatic interactions are the main forces between DDDAC and the minerals. When the concentration of DDDAC is from 2× 10^-4 to 4×10-3 mol/L large differences in adsorption density, and adsorption kinetics, of DDDAC onto scheelite, calcite, and fluorite provide desirable conditions for achieving high selectivity.
基金the 11th Five-Year Plan of the National Scientific and Technological Program of China(No. 2007BAB22B01)the National Natural Science Foundation of China(No.50704036).
文摘The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.