The leaching kinetics of zinc silicate in ammonium chloride solution was investigated. The effects of stirring speed (150?400 r/min), leaching temperature (95-108 ℃, particle size of zinc silicate (61-150 μm...The leaching kinetics of zinc silicate in ammonium chloride solution was investigated. The effects of stirring speed (150?400 r/min), leaching temperature (95-108 ℃, particle size of zinc silicate (61-150 μm) and the concentration of ammonium chloride (3.5-5.5 mol/L) on leaching rate of zinc were studied. The results show that decreasing the particle size of zinc silicate and increasing the leaching temperature and concentration of ammonium chloride can obviously enhance the leaching rate of zinc. Among the kinetic models of the porous solids tested, the grain model with porous diffusion control can well describe the zinc leaching kinetics. The apparent activation energy of the leaching reaction is 161.26 kJ/mol and the reaction order with respect to ammonium chloride is 3.5.展开更多
This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline...This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline anion(HCO3^-,CO3^2-,OH^-,AlO2^-)concentration reduced from 38.89 to 25.50 mmol/L,leaching rate of soluble sodium was 80.86%with ammonium chloride addition of 0.75%,liquid/solid(L/S)ratio of 3(mL/g),temperature of 30°C and reaction time of 18 h;L/S ratio was the main factor affecting the removal of alkaline anion and the leaching of sodium.Furthermore,ammonium chloride promoted the dissolution of diaspore and changed the micro/morphological characteristics with the increase of massive structure.The findings of this work will contribute to achieve soil-formation of bauxite residue.展开更多
In order to decrease the evaporating rate of ammonia and increase the solubility of copper in the solution,ethylenediamine was added into the ammonia-ammonium chloride system to leach the copper-containing oxide ores....In order to decrease the evaporating rate of ammonia and increase the solubility of copper in the solution,ethylenediamine was added into the ammonia-ammonium chloride system to leach the copper-containing oxide ores.The thermodynamic model was constructed and the solubility of malachite Cu2(OH)2CO3 in the ammonia-ammonium chloride-ethylenediamine(En)-water system was calculated using the exponential computation method based on both mass balance and charge balance.It is found that the solubility of copper can be increased and the free ammonia concentration can be decreased by submitting partial ammonia with ethylenediamine.The lower free ammonia concentration in the solution is a guarantee to the lower evaporating rate of ammonia.The conditions of malachite Cu2(OH)2CO3 converting to atacamite Cu(OH)1.5Cl0.5 were also studied.A group of experiments were designed to validate the veracity of the results of the thermodynamic calculation.It is found that the thermodynamic model is reliable and it can guide the leaching process.展开更多
The leaching kinetics of Tang-dan refractory low grade complex copper ore was investigated in ammonia-ammonium chloride solution.The concentration of ammonia and ammonium chloride,the ore particle size,the solid-to-li...The leaching kinetics of Tang-dan refractory low grade complex copper ore was investigated in ammonia-ammonium chloride solution.The concentration of ammonia and ammonium chloride,the ore particle size,the solid-to-liquid ratio and the temperature were chosen as parameters in the experiments.The results show that temperature,concentration of ammonia and ammonium chloride have favorable influence on the leaching rate of copper oxide ores.But,leaching rate decreases with increasing particle size and solid-to-liquid ratio.The leaching process is controlled by the diffusion of the lixiviant and the activation energy is determined to be 23.279 kJ/mol.An equation was also proposed to describe the leaching kinetics.展开更多
基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProject(51374254)supported by the National Natural Science Foundation of China
文摘The leaching kinetics of zinc silicate in ammonium chloride solution was investigated. The effects of stirring speed (150?400 r/min), leaching temperature (95-108 ℃, particle size of zinc silicate (61-150 μm) and the concentration of ammonium chloride (3.5-5.5 mol/L) on leaching rate of zinc were studied. The results show that decreasing the particle size of zinc silicate and increasing the leaching temperature and concentration of ammonium chloride can obviously enhance the leaching rate of zinc. Among the kinetic models of the porous solids tested, the grain model with porous diffusion control can well describe the zinc leaching kinetics. The apparent activation energy of the leaching reaction is 161.26 kJ/mol and the reaction order with respect to ammonium chloride is 3.5.
基金Projects(41877511,41842020) supported by the National Natural Science Foundation of ChinaProject(201509048) supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline anion(HCO3^-,CO3^2-,OH^-,AlO2^-)concentration reduced from 38.89 to 25.50 mmol/L,leaching rate of soluble sodium was 80.86%with ammonium chloride addition of 0.75%,liquid/solid(L/S)ratio of 3(mL/g),temperature of 30°C and reaction time of 18 h;L/S ratio was the main factor affecting the removal of alkaline anion and the leaching of sodium.Furthermore,ammonium chloride promoted the dissolution of diaspore and changed the micro/morphological characteristics with the increase of massive structure.The findings of this work will contribute to achieve soil-formation of bauxite residue.
基金Project(2007CB613604)supported by the National Basic Research Program of ChinaProject(50674104)supported by the National Natural Science Foundation of China
文摘In order to decrease the evaporating rate of ammonia and increase the solubility of copper in the solution,ethylenediamine was added into the ammonia-ammonium chloride system to leach the copper-containing oxide ores.The thermodynamic model was constructed and the solubility of malachite Cu2(OH)2CO3 in the ammonia-ammonium chloride-ethylenediamine(En)-water system was calculated using the exponential computation method based on both mass balance and charge balance.It is found that the solubility of copper can be increased and the free ammonia concentration can be decreased by submitting partial ammonia with ethylenediamine.The lower free ammonia concentration in the solution is a guarantee to the lower evaporating rate of ammonia.The conditions of malachite Cu2(OH)2CO3 converting to atacamite Cu(OH)1.5Cl0.5 were also studied.A group of experiments were designed to validate the veracity of the results of the thermodynamic calculation.It is found that the thermodynamic model is reliable and it can guide the leaching process.
基金Projects(2007CB613604) supported by the National Basic Research Program of ChinaProject(50674104) supported by the National Natural Science Foundation of China
文摘The leaching kinetics of Tang-dan refractory low grade complex copper ore was investigated in ammonia-ammonium chloride solution.The concentration of ammonia and ammonium chloride,the ore particle size,the solid-to-liquid ratio and the temperature were chosen as parameters in the experiments.The results show that temperature,concentration of ammonia and ammonium chloride have favorable influence on the leaching rate of copper oxide ores.But,leaching rate decreases with increasing particle size and solid-to-liquid ratio.The leaching process is controlled by the diffusion of the lixiviant and the activation energy is determined to be 23.279 kJ/mol.An equation was also proposed to describe the leaching kinetics.