Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic a...Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic acid, which could only diffuse into the mesopores and not the mi‐cropores owing to the size of the trichloroacetic acid molecules. Empty spaces are created in the catalyst as a result of removal of the Al atoms from the zeolite structure. If Si atoms fill the empty space, then the structure of the mesopores becomes similar to silicates, which do not have any cata‐lytic properties. Silicon containing solution was used to fill the empty spaces, and in doing so, a unique method was developed, by which silicon atoms can directly replace the extracted Al atoms from the mesopore structure. Therefore, by changing the geometry and properties of the mesopores and micropores, the amount of coke reduced from 14%for HZSM‐5 to 3%for the modified zeolite.展开更多
The removal of acid compounds (naphthenates) from acidic oil with ionic liquids was systematically investigated. [BMIM]Br-AlCl3 was used to investigate the effect on deacidification of oil. Experimental results show...The removal of acid compounds (naphthenates) from acidic oil with ionic liquids was systematically investigated. [BMIM]Br-AlCl3 was used to investigate the effect on deacidification of oil. Experimental results showed that at a temperature of 323K with a molar ratio of AlCl3 to [BM1M]Br-AlCl3 of 0.2, and a mass ratio of IL to white oil of 4%, the deacidification rate could reach 75.9%. And a reaction time of 4 h was sufficient to achieve the goal. The study on reproducibility of catalytic performance of [BMIM]Br-AlCl3 showed the possibility of using the ionic liquid in the continuous catalytic reaction.展开更多
1-Butyl-3-methylimidazolium bromochloroaluminate ([bmim]Br-AlCl3) ionic liquid was used as an acid catalyst for removal of trace olefins from the aromatic hydrocarbons. The influence of various reaction parameters s...1-Butyl-3-methylimidazolium bromochloroaluminate ([bmim]Br-AlCl3) ionic liquid was used as an acid catalyst for removal of trace olefins from the aromatic hydrocarbons. The influence of various reaction parameters such as reaction time, temperature, dosage and acid strength of catalyst was investigated. The experimental results demonstrated that the ionic liquid exhibited excellent activity under mild reaction conditions, with the conversion of olefins reaching 98.84% and the bromine index of the aromatics varying from 1129 to 13. On the basis of the results obtained, thereof, a possible reaction mechanism was proposed.展开更多
Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the c...Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the catalyst. The ionic liquids were prepared with different molar ratios of Et3NHC1 to A1CI3, and the effect of the molar ratio between A1C13 and Et3NHC1, the reaction time, the reaction temperature, the ionic liquid dosage, as well as the molar ratio of toluene to chloro- 2-methylpropane on the alkylation reaction of toluene with chloro-2-methyl-propane was investigated. The test results showed that the acidic ionic liquids prepared with Et3NHC1 and A1C13 had good activity and selectivity for the alkylation reaction of toluene with alkyl chloride to produce PTBT. The optimal reaction conditions were specified at an A1C13 to Et3N- HCI ratio of 1.6, a reaction temperature of 20 ℃, a mass fraction of toluene to ionic liquid of 10%, and a chloro-2-methyl- propane to toluene molar ratio of 0.5. Under the suitable reaction conditions, a 98% conversion of chloro-2-methylpropane and an 82.5% selectivity of PTBT were obtained. Ionic liquids could be reused 5 times with its catalytic activity unchanged, and the regenerated ionic liquids can be recycled.展开更多
基金partly supported by the International Science Foundation~~
文摘Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic acid, which could only diffuse into the mesopores and not the mi‐cropores owing to the size of the trichloroacetic acid molecules. Empty spaces are created in the catalyst as a result of removal of the Al atoms from the zeolite structure. If Si atoms fill the empty space, then the structure of the mesopores becomes similar to silicates, which do not have any cata‐lytic properties. Silicon containing solution was used to fill the empty spaces, and in doing so, a unique method was developed, by which silicon atoms can directly replace the extracted Al atoms from the mesopore structure. Therefore, by changing the geometry and properties of the mesopores and micropores, the amount of coke reduced from 14%for HZSM‐5 to 3%for the modified zeolite.
文摘The removal of acid compounds (naphthenates) from acidic oil with ionic liquids was systematically investigated. [BMIM]Br-AlCl3 was used to investigate the effect on deacidification of oil. Experimental results showed that at a temperature of 323K with a molar ratio of AlCl3 to [BM1M]Br-AlCl3 of 0.2, and a mass ratio of IL to white oil of 4%, the deacidification rate could reach 75.9%. And a reaction time of 4 h was sufficient to achieve the goal. The study on reproducibility of catalytic performance of [BMIM]Br-AlCl3 showed the possibility of using the ionic liquid in the continuous catalytic reaction.
基金the Sinopec Zhenhai Refining & Chemical Company for financial support
文摘1-Butyl-3-methylimidazolium bromochloroaluminate ([bmim]Br-AlCl3) ionic liquid was used as an acid catalyst for removal of trace olefins from the aromatic hydrocarbons. The influence of various reaction parameters such as reaction time, temperature, dosage and acid strength of catalyst was investigated. The experimental results demonstrated that the ionic liquid exhibited excellent activity under mild reaction conditions, with the conversion of olefins reaching 98.84% and the bromine index of the aromatics varying from 1129 to 13. On the basis of the results obtained, thereof, a possible reaction mechanism was proposed.
基金the financial support from the Beijing University of Chemical Technologythe Key Laboratory of Advanced Chemical Engineering and Technology, Beijing Institute of Petrochemical Technology, for the analysis of samples
文摘Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the catalyst. The ionic liquids were prepared with different molar ratios of Et3NHC1 to A1CI3, and the effect of the molar ratio between A1C13 and Et3NHC1, the reaction time, the reaction temperature, the ionic liquid dosage, as well as the molar ratio of toluene to chloro- 2-methylpropane on the alkylation reaction of toluene with chloro-2-methyl-propane was investigated. The test results showed that the acidic ionic liquids prepared with Et3NHC1 and A1C13 had good activity and selectivity for the alkylation reaction of toluene with alkyl chloride to produce PTBT. The optimal reaction conditions were specified at an A1C13 to Et3N- HCI ratio of 1.6, a reaction temperature of 20 ℃, a mass fraction of toluene to ionic liquid of 10%, and a chloro-2-methyl- propane to toluene molar ratio of 0.5. Under the suitable reaction conditions, a 98% conversion of chloro-2-methylpropane and an 82.5% selectivity of PTBT were obtained. Ionic liquids could be reused 5 times with its catalytic activity unchanged, and the regenerated ionic liquids can be recycled.