A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was a...A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was achieved through advances in our understanding of the formation mechanism of debris flow.To expand the applicable spatial scale of this forecasting model,a method of identifying potential debris flow watersheds was used to locate areas vulnerable to debris flow within a forecast region.Using these watersheds as forecasting units and a prediction method based on the water-soil coupling mechanism,a new forecasting method of debris flow at the regional scale was established.In order to test the prediction ability of this new forecasting method,the Sichuan province,China was selected as a study zone and the large-scale debris flow disasters attributable to heavy rainfall in this region on July 9,2013 were taken as the study case.According to debris flow disaster data on July 9,2013 which were provided by the geo-environmental monitoring station of Sichuan province,there were 252 watersheds in which debris flow events actually occurred.The current model predicted that 265 watersheds were likely to experience a debris flow event.Among these,43 towns including 204 debrisflow watersheds were successfully forecasted and 24 towns including 48 watersheds failed.The false prediction rate and failure prediction rate of thisforecast model were 23% and 19%,respectively.The results show that this method is more accurate and more applicable than traditional methods.展开更多
The coupling relation exists in water and soil conser-vation and economic-social development. The article analyses the relation of soil and water conservation and economic-social development stages as well as the coup...The coupling relation exists in water and soil conser-vation and economic-social development. The article analyses the relation of soil and water conservation and economic-social development stages as well as the coupling analytical method. Then calculates the expecting income by dispersing Markov decision and calculates the correlation coefficient and the re-lationship degree. The article obtains the relationship of soil and water conservation investments and all kinds of incomes. Finally, it analyzes the important meaning in socio-economic development of water and soil conservation.展开更多
The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation...The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation results. This research developed a one-dimensional soil moisture assimilation scheme based on the Ensemble Kalman Filter (EnKF) and Genetic Algorithm (GA). A two-dimensional hydrologic model-Distributed Hydrology-Soil-Vegetation Model (DHSVM) was coupled with a semi-empirical backscattering model (Oh). The Advanced Synthetic Aperture Radar (ASAR) data were assimilated with this coupled model and the field observation data were used to validate this scheme in the soil moisture assimilation experiment. In order to improve the assimilation results, a cost function was set up based on the distance between the simulated backscattering coefficient from the coupled model and the observed backscattering coefficient from ASAR. The EnKF and GA were used to re-initialize and re-parameterize the simulation process, respectively. The assimilation results were compared with the free-run simulations from hydrologic model and the field observation data. The results obtained indicate that this assimilation scheme is practical and it can improve the accuracy of soil moisture estimation significantly.展开更多
Based on the drying-wetting cycles experiment and the carbonation-drying-wetting cycles experiment for coral aggregate seawater concrete(CASC)with different strength grades,the effects of carbonation-drying-wetting on...Based on the drying-wetting cycles experiment and the carbonation-drying-wetting cycles experiment for coral aggregate seawater concrete(CASC)with different strength grades,the effects of carbonation-drying-wetting on the durability of CASC are studied with the surface state,mass loss rate,relative dynamic elastic modulus,ultrasonic wave velocity and cube compressive strength as indices.Results show that the mass loss rate of CASC increases gradually with the increase in cycle times in the drying-wetting and carbonation-drying-wetting cycles.The mass loss rate increases relatively slowly at the initial stage but it increases remarkably after 10 cycles.The relative dynamic elastic modulus and ultrasonic wave velocity decrease gradually with the increase in cycle times.After 6 cycles,the decrease rate of the relative dynamic elastic modulus and ultrasonic wave velocity of CASC tends to be flat and the surface is slightly damaged.Compared with the initial 28 d cube compressive strength,the cube compressive strength of CASC decreases by 8.8%to 11.0%.Drying-wetting cycles and carbonation can accelerate seawater erosion on CASC,and drying-wetting cycles result in salting-out and accelerate the destruction of concrete.Therefore,the carbonation-drying-wetting accelerates the destruction of CASC.展开更多
Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically in...Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically involved. Most previous studies on the unsaturated flow and its influence on slope stability were based on the singlephase water flow model (i.e., the Richards Equation) or the waterair two-phase flow model. The effects of gas transport and soil deformation on the movement of groundwater and the evolution of slope stability were less examined with a coupled solid-water-air model. In this paper, a numerical model was established based on the principles of the continuum mechanics and the averaging approach of the mixture theory and implemented in an FEM code for analysis of the coupled deformation, water flow and gas transport in porous media. The proposed model and the computer code were validated by the Liakopoulos drainage test over a sand column, and the significant effect of the lateral air boundary condition on the draining process of water was discussed. On this basis, the coupled processes of groundwater flow, gas transport and soil deformation in a homogeneous soil slope under a long heavy rainfall were simulated with the proposed three-phase model, and the numerical results revealed the remarkable delaying effects of gas transport and soil deformation on the propagation of the wetting front and the evolution of the slope stability. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.展开更多
基金supported by the foundation of the Research Fund for Commonweal Trades (Meteorology) (Grant No. GYHY201006039)the International Cooperation Project of the Department of Science and Technology of Sichuan Province (Grant No. 2009HH0005)
文摘A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was achieved through advances in our understanding of the formation mechanism of debris flow.To expand the applicable spatial scale of this forecasting model,a method of identifying potential debris flow watersheds was used to locate areas vulnerable to debris flow within a forecast region.Using these watersheds as forecasting units and a prediction method based on the water-soil coupling mechanism,a new forecasting method of debris flow at the regional scale was established.In order to test the prediction ability of this new forecasting method,the Sichuan province,China was selected as a study zone and the large-scale debris flow disasters attributable to heavy rainfall in this region on July 9,2013 were taken as the study case.According to debris flow disaster data on July 9,2013 which were provided by the geo-environmental monitoring station of Sichuan province,there were 252 watersheds in which debris flow events actually occurred.The current model predicted that 265 watersheds were likely to experience a debris flow event.Among these,43 towns including 204 debrisflow watersheds were successfully forecasted and 24 towns including 48 watersheds failed.The false prediction rate and failure prediction rate of thisforecast model were 23% and 19%,respectively.The results show that this method is more accurate and more applicable than traditional methods.
文摘The coupling relation exists in water and soil conser-vation and economic-social development. The article analyses the relation of soil and water conservation and economic-social development stages as well as the coupling analytical method. Then calculates the expecting income by dispersing Markov decision and calculates the correlation coefficient and the re-lationship degree. The article obtains the relationship of soil and water conservation investments and all kinds of incomes. Finally, it analyzes the important meaning in socio-economic development of water and soil conservation.
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2007CB714400)the Program of One Hundred Talents of the Chinese Academy of Sciences (No. 99T3005WA2)
文摘The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation results. This research developed a one-dimensional soil moisture assimilation scheme based on the Ensemble Kalman Filter (EnKF) and Genetic Algorithm (GA). A two-dimensional hydrologic model-Distributed Hydrology-Soil-Vegetation Model (DHSVM) was coupled with a semi-empirical backscattering model (Oh). The Advanced Synthetic Aperture Radar (ASAR) data were assimilated with this coupled model and the field observation data were used to validate this scheme in the soil moisture assimilation experiment. In order to improve the assimilation results, a cost function was set up based on the distance between the simulated backscattering coefficient from the coupled model and the observed backscattering coefficient from ASAR. The EnKF and GA were used to re-initialize and re-parameterize the simulation process, respectively. The assimilation results were compared with the free-run simulations from hydrologic model and the field observation data. The results obtained indicate that this assimilation scheme is practical and it can improve the accuracy of soil moisture estimation significantly.
基金The National Natural Science Foundation of China(No.11832013,51878350)the Fundamental Research Funds for the Central Universities(No.B210202023)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20180433)the Water Resources Science and Technology Project of Jiangsu Province(No.2020017)the Basic Science Research Project of Nantong(No.JC2020120)the Key Laboratory of Coastal Disaster and Defence of Ministry of Education(Hohai University)(No.202006).
文摘Based on the drying-wetting cycles experiment and the carbonation-drying-wetting cycles experiment for coral aggregate seawater concrete(CASC)with different strength grades,the effects of carbonation-drying-wetting on the durability of CASC are studied with the surface state,mass loss rate,relative dynamic elastic modulus,ultrasonic wave velocity and cube compressive strength as indices.Results show that the mass loss rate of CASC increases gradually with the increase in cycle times in the drying-wetting and carbonation-drying-wetting cycles.The mass loss rate increases relatively slowly at the initial stage but it increases remarkably after 10 cycles.The relative dynamic elastic modulus and ultrasonic wave velocity decrease gradually with the increase in cycle times.After 6 cycles,the decrease rate of the relative dynamic elastic modulus and ultrasonic wave velocity of CASC tends to be flat and the surface is slightly damaged.Compared with the initial 28 d cube compressive strength,the cube compressive strength of CASC decreases by 8.8%to 11.0%.Drying-wetting cycles and carbonation can accelerate seawater erosion on CASC,and drying-wetting cycles result in salting-out and accelerate the destruction of concrete.Therefore,the carbonation-drying-wetting accelerates the destruction of CASC.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50839004, 51079107) the Program for New Centu-ry Excellent Talents in University (Grant No. NCET-09-0610)
文摘Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically involved. Most previous studies on the unsaturated flow and its influence on slope stability were based on the singlephase water flow model (i.e., the Richards Equation) or the waterair two-phase flow model. The effects of gas transport and soil deformation on the movement of groundwater and the evolution of slope stability were less examined with a coupled solid-water-air model. In this paper, a numerical model was established based on the principles of the continuum mechanics and the averaging approach of the mixture theory and implemented in an FEM code for analysis of the coupled deformation, water flow and gas transport in porous media. The proposed model and the computer code were validated by the Liakopoulos drainage test over a sand column, and the significant effect of the lateral air boundary condition on the draining process of water was discussed. On this basis, the coupled processes of groundwater flow, gas transport and soil deformation in a homogeneous soil slope under a long heavy rainfall were simulated with the proposed three-phase model, and the numerical results revealed the remarkable delaying effects of gas transport and soil deformation on the propagation of the wetting front and the evolution of the slope stability. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.