期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
联合SVM和HMM的水上/水下导航场景感知模型构建
被引量:
1
1
作者
朱锋
罗科干
+2 位作者
陈惟杰
刘万科
张小红
《测绘学报》
EI
CSCD
北大核心
2023年第5期738-747,共10页
导航场景感知是智能化PNT的重要特征,更是实现多场景无缝导航定位的基础。本文聚焦水上/水下导航场景,考虑电磁波的衰减程度差异将其细分为水上、浅水、深水3类场景,利用支持向量机(support vector machine,SVM)进行场景分类与识别,在...
导航场景感知是智能化PNT的重要特征,更是实现多场景无缝导航定位的基础。本文聚焦水上/水下导航场景,考虑电磁波的衰减程度差异将其细分为水上、浅水、深水3类场景,利用支持向量机(support vector machine,SVM)进行场景分类与识别,在此基础上,引入隐马尔可夫模型(hidden Markov model,HMM)表达导航场景切换,进一步提升场景识别可靠性。本文分别构建了基于结果联合(SVM-HMM1)及基于概率联合(SVM-HMM2)的水上/水下导航场景感知模型。实测分析表明,两种模型能够实现高精度场景感知,SVM-HMM1与SVM-HMM2识别准确率分别为91.36%与95.11%;与单一的HMM和SVM模型相比,联合模型在结果分类与识别上更为稳定,准确率提升约为0.95%~8.46%。
展开更多
关键词
智能PNT
导航
场景
感知
水上/水下导航场景
支持向量机
隐马尔可夫模型
下载PDF
职称材料
题名
联合SVM和HMM的水上/水下导航场景感知模型构建
被引量:
1
1
作者
朱锋
罗科干
陈惟杰
刘万科
张小红
机构
湖北珞珈实验室
武汉大学测绘学院
出处
《测绘学报》
EI
CSCD
北大核心
2023年第5期738-747,共10页
基金
国家重点研发计划(2020YFB0505803)
国家自然科学基金(42104021)
+1 种基金
湖北省科技重大项目(2021AAA010)
湖北珞珈实验室专项(220100005)。
文摘
导航场景感知是智能化PNT的重要特征,更是实现多场景无缝导航定位的基础。本文聚焦水上/水下导航场景,考虑电磁波的衰减程度差异将其细分为水上、浅水、深水3类场景,利用支持向量机(support vector machine,SVM)进行场景分类与识别,在此基础上,引入隐马尔可夫模型(hidden Markov model,HMM)表达导航场景切换,进一步提升场景识别可靠性。本文分别构建了基于结果联合(SVM-HMM1)及基于概率联合(SVM-HMM2)的水上/水下导航场景感知模型。实测分析表明,两种模型能够实现高精度场景感知,SVM-HMM1与SVM-HMM2识别准确率分别为91.36%与95.11%;与单一的HMM和SVM模型相比,联合模型在结果分类与识别上更为稳定,准确率提升约为0.95%~8.46%。
关键词
智能PNT
导航
场景
感知
水上/水下导航场景
支持向量机
隐马尔可夫模型
Keywords
intelligent PNT
navigation context awareness
overwater and underwater scenes
support vector machine
hidden Markov model
分类号
P228 [天文地球—大地测量学与测量工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
联合SVM和HMM的水上/水下导航场景感知模型构建
朱锋
罗科干
陈惟杰
刘万科
张小红
《测绘学报》
EI
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部