As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which prom...As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which promotes the progress of key technologies and proposes a series of technical problems. Therefore, it is necessary to make systemic analysis and in-depth study for the progress of AUV's key technologies and innovative applications. The multi-functional mission needs and its key technologies involved in complex sea conditions are pointed out through analyzing the domestic and foreign technical programs, functional characteristics and future development plans. Furthermore, the overall design of a multi-moving state AUV is proposed. Then, technical innovations of the key technologies, such as thrust vector, propeller design, kinematics and dynamics, navigation control, and ambient flow field characteristics, are made, combining with the structural characteristics and motion characteristics of the new multi-moving state AUV. The results verify the good performance of the multi-moving state AUV and provide a theoretical guidance and technical support for the design of new AUV in real complex sea conditions.展开更多
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image...The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.展开更多
A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at...A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefbre, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.展开更多
Diuron is frequently detected in surface- and groundwater under the vineyards, where organic amendments are often used, in Burgundy of France. Undisturbed column experiments were conducted to study the influence of th...Diuron is frequently detected in surface- and groundwater under the vineyards, where organic amendments are often used, in Burgundy of France. Undisturbed column experiments were conducted to study the influence of three composted organic amendments on diuron leaching through columns of two vineyard soils from Vosne-Roman′ee(VR, calcareous Cambisol) and Beaujolais(Bj, sandy Leptosol), France. Bromide(used as non-reactive tracer) and diuron breakthrough curves(BTCs) were analyzed using convectivedispersive equation(CDE), two-region(mobile-immobile, MIM) and two-site models. No influence of the composts was observed on the bromide recovery rates. The CDE model described well the bromide BTCs for all columns of the Bj soil and seven of the VR soil, suggesting a homogeneous water flow. However, for five VR soil columns, the MIM model fitted better, suggesting a partition of the water flow(15%–50% of matrix flow). The texture, the coarse material content and the tillage of the VR soil could explain this heterogeneity. However, for all columns, diuron leaching was greater through the Bj soil(46%–68%) than the VR soil(28%–39%). The compost addition resulted in a contrasting effect on diuron leaching: no difference or a decrease was observed for the VR soil, probably due to an increase of adsorption sites, whereas no difference or an increase was observed for the Bj soil possibly because of interactions and/or competition of diuron with the compost water-extractable organic matter which could facilitate its transport. All the diuron BTCs were best described using the two-site model, suggesting a large proportion of time-dependent sorption sites(30%–50%). The soil type and the nature of the amendments had contrasting influences on diuron transport. Composts with a high water-soluble fraction must be avoided in sandy soils to reduce the risk of groundwater contamination.展开更多
基金Project(ZR2014EEP019) supported by the Natural Science Foundation of Shandong Province,ChinaProject(51505491) supported by the National Natural Science Foundation of China
文摘As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which promotes the progress of key technologies and proposes a series of technical problems. Therefore, it is necessary to make systemic analysis and in-depth study for the progress of AUV's key technologies and innovative applications. The multi-functional mission needs and its key technologies involved in complex sea conditions are pointed out through analyzing the domestic and foreign technical programs, functional characteristics and future development plans. Furthermore, the overall design of a multi-moving state AUV is proposed. Then, technical innovations of the key technologies, such as thrust vector, propeller design, kinematics and dynamics, navigation control, and ambient flow field characteristics, are made, combining with the structural characteristics and motion characteristics of the new multi-moving state AUV. The results verify the good performance of the multi-moving state AUV and provide a theoretical guidance and technical support for the design of new AUV in real complex sea conditions.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025/E091002the Open Research Foundation of SKLab AUV, HEU under Grant No.2008003
文摘The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.
基金the Marine Research Center of Amirkabir University of Technology for financial support of thi sresearch
文摘A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefbre, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.
文摘Diuron is frequently detected in surface- and groundwater under the vineyards, where organic amendments are often used, in Burgundy of France. Undisturbed column experiments were conducted to study the influence of three composted organic amendments on diuron leaching through columns of two vineyard soils from Vosne-Roman′ee(VR, calcareous Cambisol) and Beaujolais(Bj, sandy Leptosol), France. Bromide(used as non-reactive tracer) and diuron breakthrough curves(BTCs) were analyzed using convectivedispersive equation(CDE), two-region(mobile-immobile, MIM) and two-site models. No influence of the composts was observed on the bromide recovery rates. The CDE model described well the bromide BTCs for all columns of the Bj soil and seven of the VR soil, suggesting a homogeneous water flow. However, for five VR soil columns, the MIM model fitted better, suggesting a partition of the water flow(15%–50% of matrix flow). The texture, the coarse material content and the tillage of the VR soil could explain this heterogeneity. However, for all columns, diuron leaching was greater through the Bj soil(46%–68%) than the VR soil(28%–39%). The compost addition resulted in a contrasting effect on diuron leaching: no difference or a decrease was observed for the VR soil, probably due to an increase of adsorption sites, whereas no difference or an increase was observed for the Bj soil possibly because of interactions and/or competition of diuron with the compost water-extractable organic matter which could facilitate its transport. All the diuron BTCs were best described using the two-site model, suggesting a large proportion of time-dependent sorption sites(30%–50%). The soil type and the nature of the amendments had contrasting influences on diuron transport. Composts with a high water-soluble fraction must be avoided in sandy soils to reduce the risk of groundwater contamination.