Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning p...Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.展开更多
Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this wo...Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.展开更多
[Objective] The research aimed to analyze the formation reason of groundwater hydrochemical characteristics in the dry valley area of Wadi Bay of Libya and provide the scientific basis for the reasonable development u...[Objective] The research aimed to analyze the formation reason of groundwater hydrochemical characteristics in the dry valley area of Wadi Bay of Libya and provide the scientific basis for the reasonable development utilization and the environmental protection of groundwater.[Method] Took Wadi Bay area(dry valley)of Libya as the example,Piper trilinear graphic representation method,the descriptive statistics,the ion ratio coefficient method and the isotope evidence were used to systematically study the special hydrochemical characteristics of shallow groundwater in the arid climate condition in Wadi Bay area of Libya.[Result] The salt content of groundwater in the area was very high,and TDS was during 3.2-8.4 g/L.The main groundwater type was Cl·SO4-Na·Ca,then was Cl·SO4-Na·Ca·Mg.The concentrations of Cl-,Na+ and SO2-4,etc.in the groundwater in 70 km from the sea had the remarkable variation,but the concentrations of Mn2+,Ba2+,Si2+,NH+4 and NO-3 didn't have the same variation phenomenon.[Conclusion] The hydrochemical characteristics of shallow groundwater didn't relate to the dissolution infiltration reaction,the evaporation concentration effect and human activities.The major cause was the mixing effect of salt and fresh water in the invasion process of seawater.展开更多
[Objective]The paper aimed to study effect of shallow groundwater at different depths on crop water requirement and crop evaporation in spring wheat field.[Method]Five treatments of shallow groundwater table at differ...[Objective]The paper aimed to study effect of shallow groundwater at different depths on crop water requirement and crop evaporation in spring wheat field.[Method]Five treatments of shallow groundwater table at different depth were designed to do evaporation experiment for spring wheat in 2008-2009.[Result]The groundwater at different depths had great impact on crop growth and field evaporation;its supply accounted for 0-52% of actual evapotranspiration.Atmospheric evaporation and crop rooting depth were the major factors to affect the uptake of groundwater at shallow table,and the supply of deep groundwater was controlled by groundwater table.[Conclusion]The study reveled the pattern of evapotranspiration of spring wheat and evaporation of shallow groundwater at different depth,in order to supply basis for the rational and effective utilization of shallow groundwater as well as optimization of the irrigation scheduling for spring wheat.展开更多
With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of th...With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of the Taiping Coal Mine in south-western Shandong province, the bottom aquifer of the Quaternary system is moderate to excellent in water-yielding capacity.The base rock above the coal seam is very thin in the concealed coal field of the Carboniferous and Permian systems.Therefore, a comprehensive dewatering plan from both the ground surface and the panel was proposed to lower the groundwater level in order to ensure mining safety.According to the hydrogeologic conditions of the 8th District, we established a numerical model so that we could simulate the groundwater flow in the dewatering process.We obtained the simulation parameters from previous data using backward modeling, such as the average coefficient of permeability of 12 m/d and the elastic storage coefficient of 0.002.From the same model, we predicted the movement of groundwater and water level variables and obtained the visible effect of the dewatering project.Despite the overburden failure during mining, no water and/or sand inrush occurred because the groundwater level in the bottom aquifer was lowered to a safe water level.展开更多
The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil po...The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil pollution and so on. The unique wettability of organisms gives inspiration to design and create new interface materials. This review focuses on the recent research progress of femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. This review starts with a presentation of the related background including the advantages of femtosecond laser and wettability theoretical basis. Then, organisms with unique wettability in nature, the preparation of superhydrophobic or underwater superoleophobic surfaces by femtosecond lasers on different materials, and their related important applications are introduced. Finally, the current challenges and future prospects with regard to this field are provided.展开更多
For our investigation into the water quality in Yulin city, we collected 76 typical water samples to be tested for particle quality. By applying a Romani type classification method the groundwater of Yulin city was cl...For our investigation into the water quality in Yulin city, we collected 76 typical water samples to be tested for particle quality. By applying a Romani type classification method the groundwater of Yulin city was classified into nine categories by type, i.e., Ca-HCO3, Na-HCO3, Na-HCO3-SO4-Cl, Na-HCO3-SO4, Na-Cl, Na-Cl-HCO3, Na-Ca- HCO3, Ca-Cl-HCO3 and Ca-HCO3-SO4-Cl. A principal component analysis was carried out in order to analyze the groundwater environment. From this analysis we considered that the information collected could be represented by 21 indices from which we extracted seven principal components, which, respectively, accounted for 37.4%, 13.0%, 8.1%, 7.2%, 6.3%, 5.9% and 4.6% of the total variation. The results show that the groundwater environment of this region is largely determined by characteristic components of the natural groundwater background. One part of the water was polluted by leaching/eluviation of solid waste generated from coal mining. Another part of the ground water was contaminated by acid mine water from the coal layer and from improper irrigation. In addition, geological and hydrogeological conditions also cause changes in the water environment.展开更多
Due to the extremely arid climate in the western Qaidam Basin,the groundwater almost becomes the single water source for local residents and industrial production.It is necessary to know the reliable information on th...Due to the extremely arid climate in the western Qaidam Basin,the groundwater almost becomes the single water source for local residents and industrial production.It is necessary to know the reliable information on the groundwater cycle in this region for reasonable and sustainable exploitation of the groundwater resources with the further execution of recycling economy policies.This study focused on the recharge,the flow rate and the discharge of groundwater in the western Qaidam Basin through investigations on water chemistry and isotopes.Hydrological,chemical and isotopic characteristics show that the groundwater in the western Qaidam Basin was recharged by meltwater from new surface snow and old bottom glaciers on the northern slope of the Kunlun Mountains.In addition,the results also prove that the source water is enough and stable,and the rates of the circulation and renewal of the groundwater are relatively quick.Therefore,it can be concluded that the groundwater resources would guarantee the regional requirement if the meltwater volume of the mountains has not a great changes in future,moreover,water exploitation should be limited to the renewable amount of the groundwater reservoir in the western Qaidam Basin.展开更多
The stability of single layer armour units on low crested and submerged breakwaters has been investigated in 2D hydraulic model tests. Armour unit movements including settlements, rocking and displacements have been d...The stability of single layer armour units on low crested and submerged breakwaters has been investigated in 2D hydraulic model tests. Armour unit movements including settlements, rocking and displacements have been determined. The effect of freeboard, packing density and wave steepness on the armour layer stability on crest, front and rear slope has been investigated. Armour units were mostly displaced in the most upper part of the seaward slope and at the seaward side of the crest. Damage on the crest was progressing towards the rear slope. About 40% to 50% larger armour units are required on the seaward slope and crest of low crested structures (as compared to conventional high crested breakwaters). About 35% larger armour units are required on the rear slope. Larger armour units are not required on submerged breakwaters if the water depth on the crest exceeds 40% of design wave height.展开更多
Xuzhou City is located in the most northwestern portion of Jiangsu Province, P. R. China. Karst groundwater in the Ordovician and Cambrian Limestone aquifers is the main source of water supply. There are 527 wells in ...Xuzhou City is located in the most northwestern portion of Jiangsu Province, P. R. China. Karst groundwater in the Ordovician and Cambrian Limestone aquifers is the main source of water supply. There are 527 wells in urban areas to exploit the karst groundwater, yielding up to 35 000 m^3 per day. After 1978, urbanization and industrialization of Xuzhou City have continued at a greatly accelerated pace; the population increased from 670 700 (1978) to 1 645 500 (2002), its GDP from 0.71 × 10^9 $ to 42.7× 10^9 $ and the urban area from 184 km^2 to 1,038 km^2 (built-up city area from 41.3 km^2 to 81.9 km^2). The volume of karst groundwater withdrawal increased yearly before the operation of a supply plant of surface water in 1992, from 3.85x 10^7 m^3(1978) to 1.34× 10^8 m^3 (1991) and now maintained at 0.1× 10^9 m^3 (2002). Intensive overexploitation of karst groundwater has caused a continuous descending of the piezometric level and the area of the depression cone increases year after year. These changes have increased the vulnerability of the karst groundwater system and have induced environmental problems such as depletion of water resources, water quality deterioration, groundwater contamination and karst collapse. The largest buried depth of karst groundwater is up to 100 m in the dry season in some areas, while 66 exhausted wells have been abandoned. A change in the thickness of the unsaturated zone due to the drawdown of the piezometric level has caused a change of the chemical environment which has an impact on the physical state and major chemical compositions in groundwater. The contents of Ca^2+, Mg^2+, NO3^-, SO4^2- and C1^- in karst groundwater has increased significantly, total hardness (CaCO3 content) rises annually in most pumping wells and exceeds the Standard of Drinking Water of P.R. China. Point source pollution and belt-like pollution along the rivers has caused water quality deterioration. The sudden loss of buoyant support due to rapid drawdown of the piezometric level has induced 7 karst collapses to form 17 pits and has caused an estimated US$ 10 million economic loss. These problems have influenced the quality of development in the city.展开更多
To recognize the presence of the headstream of gushing water in coal mines, the SVM (Support Vector Ma- chine) was proposed to analyze the gushing water based on hydrogeochemical methods. First, the SVM model for head...To recognize the presence of the headstream of gushing water in coal mines, the SVM (Support Vector Ma- chine) was proposed to analyze the gushing water based on hydrogeochemical methods. First, the SVM model for head- stream analysis was trained on the water sample of available headstreams, and then we used this to predict the unknown samples, which were validated in practice by comparing the predicted results with the actual results. The experimental results show that the SVM is a feasible method to differentiate between two headstreams and the H-SVMs (Hierachical SVMs) is a preferable way to deal with the problem of multi-headstreams. Compared with other methods, the SVM is based on a strict mathematical theory with a simple structure and good generalization properties. As well, the support vector W in the decision function can describe the weights of the recognition factors of water samples, which is very important for the analysis of headstreams of gushing water in coal mines.展开更多
基金Project(202208340045)supported by the China Scholarship Council FundProject(U21A20110)supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China+1 种基金Project(EUCMR202201)supported by the Open Project Program of Anhui Engineering Research Center of Exploitation and Utilization of Closed/abandoned Mine Resources,ChinaProject(2023cxcyzx063)supported by the Anhui Province New Era Talent Education Project,China。
文摘Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.
基金Project(8212033)supported by the Natural Science Foundation of Beijing,ChinaProject(BBJ2023051)supported by the Fundamental Research Funds of China University of Mining and Technology-BeijingProject(SKLGDUEK202221)supported by the Innovation Fund Research Project,China。
文摘Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.
基金Supported by the International Cooperation Item "Groundwater Quality Management in the Coastal Region of Libya"Scientific Research Initial Fund of Returned Overseas Students in Ministry of Education"Innovation Team" Item of Basic Scientific Research Operating Cost in Jilin University(20082004)~~
文摘[Objective] The research aimed to analyze the formation reason of groundwater hydrochemical characteristics in the dry valley area of Wadi Bay of Libya and provide the scientific basis for the reasonable development utilization and the environmental protection of groundwater.[Method] Took Wadi Bay area(dry valley)of Libya as the example,Piper trilinear graphic representation method,the descriptive statistics,the ion ratio coefficient method and the isotope evidence were used to systematically study the special hydrochemical characteristics of shallow groundwater in the arid climate condition in Wadi Bay area of Libya.[Result] The salt content of groundwater in the area was very high,and TDS was during 3.2-8.4 g/L.The main groundwater type was Cl·SO4-Na·Ca,then was Cl·SO4-Na·Ca·Mg.The concentrations of Cl-,Na+ and SO2-4,etc.in the groundwater in 70 km from the sea had the remarkable variation,but the concentrations of Mn2+,Ba2+,Si2+,NH+4 and NO-3 didn't have the same variation phenomenon.[Conclusion] The hydrochemical characteristics of shallow groundwater didn't relate to the dissolution infiltration reaction,the evaporation concentration effect and human activities.The major cause was the mixing effect of salt and fresh water in the invasion process of seawater.
基金Supported by Science Research Project of Ningxia Higher Education~~
文摘[Objective]The paper aimed to study effect of shallow groundwater at different depths on crop water requirement and crop evaporation in spring wheat field.[Method]Five treatments of shallow groundwater table at different depth were designed to do evaporation experiment for spring wheat in 2008-2009.[Result]The groundwater at different depths had great impact on crop growth and field evaporation;its supply accounted for 0-52% of actual evapotranspiration.Atmospheric evaporation and crop rooting depth were the major factors to affect the uptake of groundwater at shallow table,and the supply of deep groundwater was controlled by groundwater table.[Conclusion]The study reveled the pattern of evapotranspiration of spring wheat and evaporation of shallow groundwater at different depth,in order to supply basis for the rational and effective utilization of shallow groundwater as well as optimization of the irrigation scheduling for spring wheat.
基金Projects 40372123, 40772192 supported by the National Natural Science Foundation of ChinaNCET-04-0486 by the Program for New Century Excellent Talents in University of China2007CB209400 by the National Basic Research Program of China
文摘With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of the Taiping Coal Mine in south-western Shandong province, the bottom aquifer of the Quaternary system is moderate to excellent in water-yielding capacity.The base rock above the coal seam is very thin in the concealed coal field of the Carboniferous and Permian systems.Therefore, a comprehensive dewatering plan from both the ground surface and the panel was proposed to lower the groundwater level in order to ensure mining safety.According to the hydrogeologic conditions of the 8th District, we established a numerical model so that we could simulate the groundwater flow in the dewatering process.We obtained the simulation parameters from previous data using backward modeling, such as the average coefficient of permeability of 12 m/d and the elastic storage coefficient of 0.002.From the same model, we predicted the movement of groundwater and water level variables and obtained the visible effect of the dewatering project.Despite the overburden failure during mining, no water and/or sand inrush occurred because the groundwater level in the bottom aquifer was lowered to a safe water level.
基金Projects(52075557,51805553) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2019-12) supported by the Project of State Key Laboratory of High Performance Complex Manufacturing,China。
文摘The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil pollution and so on. The unique wettability of organisms gives inspiration to design and create new interface materials. This review focuses on the recent research progress of femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. This review starts with a presentation of the related background including the advantages of femtosecond laser and wettability theoretical basis. Then, organisms with unique wettability in nature, the preparation of superhydrophobic or underwater superoleophobic surfaces by femtosecond lasers on different materials, and their related important applications are introduced. Finally, the current challenges and future prospects with regard to this field are provided.
基金Project 2004-295 supported by the Trans-century Scientific Great Project of Ministry of Education of China
文摘For our investigation into the water quality in Yulin city, we collected 76 typical water samples to be tested for particle quality. By applying a Romani type classification method the groundwater of Yulin city was classified into nine categories by type, i.e., Ca-HCO3, Na-HCO3, Na-HCO3-SO4-Cl, Na-HCO3-SO4, Na-Cl, Na-Cl-HCO3, Na-Ca- HCO3, Ca-Cl-HCO3 and Ca-HCO3-SO4-Cl. A principal component analysis was carried out in order to analyze the groundwater environment. From this analysis we considered that the information collected could be represented by 21 indices from which we extracted seven principal components, which, respectively, accounted for 37.4%, 13.0%, 8.1%, 7.2%, 6.3%, 5.9% and 4.6% of the total variation. The results show that the groundwater environment of this region is largely determined by characteristic components of the natural groundwater background. One part of the water was polluted by leaching/eluviation of solid waste generated from coal mining. Another part of the ground water was contaminated by acid mine water from the coal layer and from improper irrigation. In addition, geological and hydrogeological conditions also cause changes in the water environment.
基金Under the auspices of National Natural Science Foundation of China (No 40603007)
文摘Due to the extremely arid climate in the western Qaidam Basin,the groundwater almost becomes the single water source for local residents and industrial production.It is necessary to know the reliable information on the groundwater cycle in this region for reasonable and sustainable exploitation of the groundwater resources with the further execution of recycling economy policies.This study focused on the recharge,the flow rate and the discharge of groundwater in the western Qaidam Basin through investigations on water chemistry and isotopes.Hydrological,chemical and isotopic characteristics show that the groundwater in the western Qaidam Basin was recharged by meltwater from new surface snow and old bottom glaciers on the northern slope of the Kunlun Mountains.In addition,the results also prove that the source water is enough and stable,and the rates of the circulation and renewal of the groundwater are relatively quick.Therefore,it can be concluded that the groundwater resources would guarantee the regional requirement if the meltwater volume of the mountains has not a great changes in future,moreover,water exploitation should be limited to the renewable amount of the groundwater reservoir in the western Qaidam Basin.
文摘The stability of single layer armour units on low crested and submerged breakwaters has been investigated in 2D hydraulic model tests. Armour unit movements including settlements, rocking and displacements have been determined. The effect of freeboard, packing density and wave steepness on the armour layer stability on crest, front and rear slope has been investigated. Armour units were mostly displaced in the most upper part of the seaward slope and at the seaward side of the crest. Damage on the crest was progressing towards the rear slope. About 40% to 50% larger armour units are required on the seaward slope and crest of low crested structures (as compared to conventional high crested breakwaters). About 35% larger armour units are required on the rear slope. Larger armour units are not required on submerged breakwaters if the water depth on the crest exceeds 40% of design wave height.
基金Project 40373044 supported by the National Natural Science Foundation of China
文摘Xuzhou City is located in the most northwestern portion of Jiangsu Province, P. R. China. Karst groundwater in the Ordovician and Cambrian Limestone aquifers is the main source of water supply. There are 527 wells in urban areas to exploit the karst groundwater, yielding up to 35 000 m^3 per day. After 1978, urbanization and industrialization of Xuzhou City have continued at a greatly accelerated pace; the population increased from 670 700 (1978) to 1 645 500 (2002), its GDP from 0.71 × 10^9 $ to 42.7× 10^9 $ and the urban area from 184 km^2 to 1,038 km^2 (built-up city area from 41.3 km^2 to 81.9 km^2). The volume of karst groundwater withdrawal increased yearly before the operation of a supply plant of surface water in 1992, from 3.85x 10^7 m^3(1978) to 1.34× 10^8 m^3 (1991) and now maintained at 0.1× 10^9 m^3 (2002). Intensive overexploitation of karst groundwater has caused a continuous descending of the piezometric level and the area of the depression cone increases year after year. These changes have increased the vulnerability of the karst groundwater system and have induced environmental problems such as depletion of water resources, water quality deterioration, groundwater contamination and karst collapse. The largest buried depth of karst groundwater is up to 100 m in the dry season in some areas, while 66 exhausted wells have been abandoned. A change in the thickness of the unsaturated zone due to the drawdown of the piezometric level has caused a change of the chemical environment which has an impact on the physical state and major chemical compositions in groundwater. The contents of Ca^2+, Mg^2+, NO3^-, SO4^2- and C1^- in karst groundwater has increased significantly, total hardness (CaCO3 content) rises annually in most pumping wells and exceeds the Standard of Drinking Water of P.R. China. Point source pollution and belt-like pollution along the rivers has caused water quality deterioration. The sudden loss of buoyant support due to rapid drawdown of the piezometric level has induced 7 karst collapses to form 17 pits and has caused an estimated US$ 10 million economic loss. These problems have influenced the quality of development in the city.
基金Project 40401038 supported by the National Natural Science Foundation of China and 2003047 by the Top 100 Outstanding Doctoral Dissertation Foun-dation of China
文摘To recognize the presence of the headstream of gushing water in coal mines, the SVM (Support Vector Ma- chine) was proposed to analyze the gushing water based on hydrogeochemical methods. First, the SVM model for head- stream analysis was trained on the water sample of available headstreams, and then we used this to predict the unknown samples, which were validated in practice by comparing the predicted results with the actual results. The experimental results show that the SVM is a feasible method to differentiate between two headstreams and the H-SVMs (Hierachical SVMs) is a preferable way to deal with the problem of multi-headstreams. Compared with other methods, the SVM is based on a strict mathematical theory with a simple structure and good generalization properties. As well, the support vector W in the decision function can describe the weights of the recognition factors of water samples, which is very important for the analysis of headstreams of gushing water in coal mines.