Attitude adjustment is a key link in the installation process of underwater facilities in deep water.To solve this problem,an omnidirectional spirit level for deep water was developed.The sealing principle of the spir...Attitude adjustment is a key link in the installation process of underwater facilities in deep water.To solve this problem,an omnidirectional spirit level for deep water was developed.The sealing principle of the spirit level and the principle of deep-water pressure resistance are analyzed,and the threaded connection strength is checked.The mechanical simulation verifies that the spirit level can withstand the pressure of 2000 m water depth,and the water pressure test is carried out for 30 min in a 20 MPa hyperbaric chamber.After the experiment is completed,the appearance of the spirit level is intact and there is no leakage.The experiment results show that the deep-water omnidirectional spirit level can be used in the deep sea within 2000 m.展开更多
The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is bas...The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit(IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit(OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.展开更多
The design of unique chamber, in which the SCUWC (self-consolidating underwater concrete) can be tested under the impact of the hydrostatic pressure from 0.1 MPa to 0.5 MPa, is presented in the paper. The results of...The design of unique chamber, in which the SCUWC (self-consolidating underwater concrete) can be tested under the impact of the hydrostatic pressure from 0.1 MPa to 0.5 MPa, is presented in the paper. The results of the preliminary tests of the effect of the hydrostatic pressure on the compressive strength of SCUWC were shown. The impact of the hydrostatic pressure on the compressive strength values of test specimens has been confirmed. There has been an increase in the strength of the specimens taken from the upper parts of the concrete samples. As it can be seen from the preliminary research, the differences in compressive strength are related to the differences that occur in the size and distribution of air voids in the samples taken from upper and lower parts of the test specimens. On the basis of the carried out investigations of the compressive strength, it can be concluded that the hydrostatic pressure has a favorable effect on the compressive strength of the tested specimens of SCUWC. Increase of the compressive strength is observed mostly in the upper layers of the samples. Preliminary analysis of the quantity and distribution of air pores in the samples of concrete subjected to pressure 0.5 MPa confirms the positive impact of the hydrostatic pressure on the layers close to the surface indicated by the absence of large air voids above 1,500μm and by reducing the quantity of air pores of size above 300μm.展开更多
The Gondo plain lies between Mali and Burkina Faso and it is in interland basin into the West African Craton. Since 2003, this study has been carried out two research projects on the southwest part of the plain, where...The Gondo plain lies between Mali and Burkina Faso and it is in interland basin into the West African Craton. Since 2003, this study has been carried out two research projects on the southwest part of the plain, where the piezometric levels are very low (50 m to 100 m). It has two main purposes: find water resources to provide drinking water supply to Ouahigouya town and assess the exploitation possibility of the deep aquifer for rural water supply. Combined methods were used to reach the objectives of this study--remote sensing, geology, geophysics (electromagnetism and resistivity methods), hydrochemistry and isotope chemistry. So, the methodology allows to specify the geology and the tectonic of the eastern border of the basin, identify and characterize the different aquifers and their relationships. Through the implementation of 250 m deep drilled boreholes, this study reveals that the water level of the lower Cambrian limestones can be under pressure below the continental terminal deposits. The study highlights paleo-karstic zones in the Gondo plain and shows that water chemistry and isotope chemistry can be used to differentiate water sheets and evaluate their recharge.展开更多
基金National key R&D Program of China(No.2017YFF0108104)Tianjin key R&D Program(No.20YFZCGX00550)。
文摘Attitude adjustment is a key link in the installation process of underwater facilities in deep water.To solve this problem,an omnidirectional spirit level for deep water was developed.The sealing principle of the spirit level and the principle of deep-water pressure resistance are analyzed,and the threaded connection strength is checked.The mechanical simulation verifies that the spirit level can withstand the pressure of 2000 m water depth,and the water pressure test is carried out for 30 min in a 20 MPa hyperbaric chamber.After the experiment is completed,the appearance of the spirit level is intact and there is no leakage.The experiment results show that the deep-water omnidirectional spirit level can be used in the deep sea within 2000 m.
基金Project(11174235)supported by the National Natural Science Foundation of ChinaProject(3102014JC02010301)supported by the Fundamental Research Funds for the Central Universities,China
文摘The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit(IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit(OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.
文摘The design of unique chamber, in which the SCUWC (self-consolidating underwater concrete) can be tested under the impact of the hydrostatic pressure from 0.1 MPa to 0.5 MPa, is presented in the paper. The results of the preliminary tests of the effect of the hydrostatic pressure on the compressive strength of SCUWC were shown. The impact of the hydrostatic pressure on the compressive strength values of test specimens has been confirmed. There has been an increase in the strength of the specimens taken from the upper parts of the concrete samples. As it can be seen from the preliminary research, the differences in compressive strength are related to the differences that occur in the size and distribution of air voids in the samples taken from upper and lower parts of the test specimens. On the basis of the carried out investigations of the compressive strength, it can be concluded that the hydrostatic pressure has a favorable effect on the compressive strength of the tested specimens of SCUWC. Increase of the compressive strength is observed mostly in the upper layers of the samples. Preliminary analysis of the quantity and distribution of air pores in the samples of concrete subjected to pressure 0.5 MPa confirms the positive impact of the hydrostatic pressure on the layers close to the surface indicated by the absence of large air voids above 1,500μm and by reducing the quantity of air pores of size above 300μm.
文摘The Gondo plain lies between Mali and Burkina Faso and it is in interland basin into the West African Craton. Since 2003, this study has been carried out two research projects on the southwest part of the plain, where the piezometric levels are very low (50 m to 100 m). It has two main purposes: find water resources to provide drinking water supply to Ouahigouya town and assess the exploitation possibility of the deep aquifer for rural water supply. Combined methods were used to reach the objectives of this study--remote sensing, geology, geophysics (electromagnetism and resistivity methods), hydrochemistry and isotope chemistry. So, the methodology allows to specify the geology and the tectonic of the eastern border of the basin, identify and characterize the different aquifers and their relationships. Through the implementation of 250 m deep drilled boreholes, this study reveals that the water level of the lower Cambrian limestones can be under pressure below the continental terminal deposits. The study highlights paleo-karstic zones in the Gondo plain and shows that water chemistry and isotope chemistry can be used to differentiate water sheets and evaluate their recharge.