期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于Blob分析和贝叶斯决策的水下目标提取方法 被引量:3
1
作者 施小成 郝丽超 +1 位作者 张伟 吴迪 《计算机应用》 CSCD 北大核心 2012年第11期3214-3217,共4页
由于水下环境复杂多变,造成目标与伪目标的高混合度,某种单一的分割方法通常不能提取出理想的目标区域,因此提出一种基于Blob分析和贝叶斯决策的水下目标提取方法。首先,利用改进的二维OTSU算法计算出最佳阈值,并根据该阈值对图像进行... 由于水下环境复杂多变,造成目标与伪目标的高混合度,某种单一的分割方法通常不能提取出理想的目标区域,因此提出一种基于Blob分析和贝叶斯决策的水下目标提取方法。首先,利用改进的二维OTSU算法计算出最佳阈值,并根据该阈值对图像进行阈值分割,经过连通性分析得到闭合的初始分割区域;然后,采用7种Blob算子对闭合区域进行7维向量描述,并基于贝叶斯决策准则剔除伪目标区域;最后,利用数学形态学算子去除目标区域边界的毛刺和干扰,得到理想的目标区域。通过对水池实验抓取的水下图像进行处理,结果表明该方法能够准确、有效地提取出真目标区域。 展开更多
关键词 水下目标提取 OTSU算法 BLOB分析 贝叶斯决策 数学形态学
下载PDF
同步码字优化降噪的声纳图像多目标检测方法
2
作者 魏光春 邢传玺 +1 位作者 崔晶 董赛蒙 《海洋测绘》 CSCD 北大核心 2024年第3期42-46,共5页
针对海底侧扫声纳图像分辨率低、噪声污染严重导致水下目标检测不准确的问题,提出一种结合同步码字优化降噪的水下声纳图像目标检测方法。利用同步码字优化对声纳图像中的乘性噪声进行降噪处理,从而使图像中的水下目标物获得更好的视觉... 针对海底侧扫声纳图像分辨率低、噪声污染严重导致水下目标检测不准确的问题,提出一种结合同步码字优化降噪的水下声纳图像目标检测方法。利用同步码字优化对声纳图像中的乘性噪声进行降噪处理,从而使图像中的水下目标物获得更好的视觉与检测效果,同时对声纳图像进行相应的数据集扩充。最后利用适合本文方法的YOLO系列中的YOLOv7对降噪后声纳图像中的目标物体进行检测,并在其特征网络中加入了卷积块注意模块,从而加强对目标的特征提取。仿真结果分析得出,同步码字优化降噪与YOLOv7相结合的目标检测方法,可使目标置信度达到79%,相较于降噪前的目标检测置信度提高16%,对于目标较小的物体,能更好地改善漏检与误检情况。 展开更多
关键词 侧扫声纳图像处理 水下目标特征提取 目标检测 同步码字优化降噪 YOLOv7目标识别
下载PDF
Classification of underwater still objects based on multi-field features and SVM 被引量:4
3
作者 TIAN Jie XUE Shan-hua HUANG Hai-ning ZHANG Chun-hua 《Journal of Marine Science and Application》 2007年第1期36-40,共5页
A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the pr... A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes time-domain, spectral, time-frequency distribution and bi-spectral features. Underwater target recognition can be considered as a problem of small sample recognition. SVM algorithm is appropriate to this kind of problems because of its outstanding generalizability. The SVM is contrasted with a Gaussian classifier and a k-nearest classifier in some experiments using real data of lake or sea trial. The experimental results indicate that SVM is better than the others two. 展开更多
关键词 underwater still objects CLASSIFICATION feature support vector machine (SVM)
下载PDF
Intrinsic mode characteristic analysis and extraction in underwater cylindrical shell acoustic radiation 被引量:4
4
作者 LIU QingYu FANG ShiLiang +3 位作者 CHENG Qiang CAO Jin AN Liang LUO XinWei 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第7期1339-1345,共7页
Target dimension is important information in underwater target classification. An intrinsic mode characteristic extraction method in underwater cylindrical shell acoustic radiation was studied in this paper based on t... Target dimension is important information in underwater target classification. An intrinsic mode characteristic extraction method in underwater cylindrical shell acoustic radiation was studied in this paper based on the mechanism of shell vibration to gain the information about its dimension instead of accurate inversion processing. The underwater cylindrical shell vibration and acoustic radiation were first analyzed using mode decomposition to solve the wave equation. The characteristic of acoustic radiation was studied with different cylindrical shell lengths, radii, thickness, excitation points and fine structures. Simulation results show that the intrinsic mode in acoustic radiation spectrum correlates closely with the geometry dimensions of cylindrical shells. Through multifaceted analysis, the strongest intrinsic mode characteristic extracted from underwater shell acoustic radiated signal was most likely relevant to the radiated source radius. Then, partial information about unknown source dimension could be gained from intrinsic mode characteristic in passive sonar applications for underwater target classification. Experimental data processing results verified the effectiveness of the method in this paper. 展开更多
关键词 cylindrical shell mode decomposition acoustic radiation characteristic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部