The phase change characteristic of the power source of an underwater glider propelled by the ocean's thermal energy is the key factor in glider attitude control. A numerical model has been established based on the en...The phase change characteristic of the power source of an underwater glider propelled by the ocean's thermal energy is the key factor in glider attitude control. A numerical model has been established based on the enthalpy method to analyze the phase change heat transfer process under convective boundary conditions. Phase change is not an isothermal process, but one that occurs at a range of temperature. The total melting time of the material is very sensitive to the surrounding temperature. When the temperature of the surroundings decreases 8 degrees, the total melting time increases 1.8 times. But variations in surrounding temperature have little effect on the initial temperature of phase change, and the slope of the temperature time history curve remains the same. However, the temperature at which phase change is completed decreases significantly. Our research shows that the phase change process is also affected by container size, boundary conditions, and the power source's cross sectional area. Materials stored in 3 cylindrical containers with a diameter of 38ram needed the shortest phase change time. Our conclusions should be helpful in effective design of underwater glider power systems.展开更多
基金Supported by the Sustainable Energy Propulsion System Program of 211’s Engineering Foundation, Shanghai Jiaotong University.
文摘The phase change characteristic of the power source of an underwater glider propelled by the ocean's thermal energy is the key factor in glider attitude control. A numerical model has been established based on the enthalpy method to analyze the phase change heat transfer process under convective boundary conditions. Phase change is not an isothermal process, but one that occurs at a range of temperature. The total melting time of the material is very sensitive to the surrounding temperature. When the temperature of the surroundings decreases 8 degrees, the total melting time increases 1.8 times. But variations in surrounding temperature have little effect on the initial temperature of phase change, and the slope of the temperature time history curve remains the same. However, the temperature at which phase change is completed decreases significantly. Our research shows that the phase change process is also affected by container size, boundary conditions, and the power source's cross sectional area. Materials stored in 3 cylindrical containers with a diameter of 38ram needed the shortest phase change time. Our conclusions should be helpful in effective design of underwater glider power systems.