为控制水产养殖塘无序发展带来的负面效应,促进水产养殖业进一步发展,首要解决的就是对其快速、准确识别和提取的问题。水产养殖塘是被复杂道路和堤坝分割的特殊网状水体,单纯的光谱特征或空间纹理特征都不足以对其准确提取,且混合特征...为控制水产养殖塘无序发展带来的负面效应,促进水产养殖业进一步发展,首要解决的就是对其快速、准确识别和提取的问题。水产养殖塘是被复杂道路和堤坝分割的特殊网状水体,单纯的光谱特征或空间纹理特征都不足以对其准确提取,且混合特征规则集对计算机性能要求越发苛刻。鉴于此,以Landsat影像序列为数据源,基于谷歌地球引擎(Google Earth Engine,GEE)平台,提出了一种结合影像光谱信息、空间特征和形态学操作的沿海水产养殖塘自动提取方法。该方法联用了双特征水体光谱指数(改进型组合水体指数(modified combined index for water identification,MCIWI)与改进的归一化差异水体指数(modified normalized difference water index,MNDWI))以突出大面积水体与养殖塘的网格特征,再利用低频滤波空间卷积运算拉伸养殖与非养殖水体之间的差异特征,将水产养殖塘区作为一个整体准确识别和快速提取。研究结果表明:①该方法总精度达到93%,Kappa系数为0.86,典型区域叠加比对检验流程验证,提取结果和实际结果重叠比例均在90%以上,平均重叠比例达92.5%,反映了提取方法的高精度和可靠性;②2020年福建省近岸海域水产养殖塘区总面积为511.73 km^(2),主要分布在漳州市、福州市和宁德市;③核密度分析结果表明漳州市的水产养殖塘集聚度高,相应其养殖塘管理压力也较大。该方法可以实现近岸海域水产养殖塘的自动化提取,对促进渔业养殖的有序管理和科学发展具有重要的意义。展开更多
文摘为控制水产养殖塘无序发展带来的负面效应,促进水产养殖业进一步发展,首要解决的就是对其快速、准确识别和提取的问题。水产养殖塘是被复杂道路和堤坝分割的特殊网状水体,单纯的光谱特征或空间纹理特征都不足以对其准确提取,且混合特征规则集对计算机性能要求越发苛刻。鉴于此,以Landsat影像序列为数据源,基于谷歌地球引擎(Google Earth Engine,GEE)平台,提出了一种结合影像光谱信息、空间特征和形态学操作的沿海水产养殖塘自动提取方法。该方法联用了双特征水体光谱指数(改进型组合水体指数(modified combined index for water identification,MCIWI)与改进的归一化差异水体指数(modified normalized difference water index,MNDWI))以突出大面积水体与养殖塘的网格特征,再利用低频滤波空间卷积运算拉伸养殖与非养殖水体之间的差异特征,将水产养殖塘区作为一个整体准确识别和快速提取。研究结果表明:①该方法总精度达到93%,Kappa系数为0.86,典型区域叠加比对检验流程验证,提取结果和实际结果重叠比例均在90%以上,平均重叠比例达92.5%,反映了提取方法的高精度和可靠性;②2020年福建省近岸海域水产养殖塘区总面积为511.73 km^(2),主要分布在漳州市、福州市和宁德市;③核密度分析结果表明漳州市的水产养殖塘集聚度高,相应其养殖塘管理压力也较大。该方法可以实现近岸海域水产养殖塘的自动化提取,对促进渔业养殖的有序管理和科学发展具有重要的意义。