The mass transfer between non-aqueous phase liquid(NAPL) phase and soil gas phase in soil vapor extraction(SVE) process has been investigated by one-dimensional venting experiments. During quasi-steady volatilization ...The mass transfer between non-aqueous phase liquid(NAPL) phase and soil gas phase in soil vapor extraction(SVE) process has been investigated by one-dimensional venting experiments. During quasi-steady volatilization of three single-component NAPLs in a sandy soil, constant initial lumped mass transfer coefficient (λgN,0) canbe obtained if the relative saturation (ξ) between NAPL phase and gas phase is higher than a critical value (ξc), andthe lumped mass transfer coefficient decreases with ξ when ξ<ξc. It is also shown that the lumped mass transfercoefficient can be increased by blending porous micro-particles into the sandy soil because of the increasing of theinterfacial area.展开更多
Traditional thermal methods of drying food have often led to loss of flavours, nutrients, vitamins, etc., which encourages non-thermal pretreatments such as osmotic dehydration (OD) and/or high electric field (HEF...Traditional thermal methods of drying food have often led to loss of flavours, nutrients, vitamins, etc., which encourages non-thermal pretreatments such as osmotic dehydration (OD) and/or high electric field (HEF) application to improve the overall product quality. The aim of this study was to evaluate the effect of osmotic dehydration (50% sucrose) with high electric field strengths of 0.5 and 1.0 kV/cm as pretreatments on the drying kinetics and mass transfer of green apples during convective drying at 65 ~C and microwave drying at 1 W/g. The added value of the OD and HEF on the drying kinetics, and the effective mass transfer coefficients of the subsequent drying methods were investigated through this research. The efficacy of these pre-treatments was assessed and compared using cell disintegration index, product texture and thus bring forth new correlations between these pre-treatments and the cell disintegration index using dielectric spectroscopy and its effect on the product texture.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20276048).
文摘The mass transfer between non-aqueous phase liquid(NAPL) phase and soil gas phase in soil vapor extraction(SVE) process has been investigated by one-dimensional venting experiments. During quasi-steady volatilization of three single-component NAPLs in a sandy soil, constant initial lumped mass transfer coefficient (λgN,0) canbe obtained if the relative saturation (ξ) between NAPL phase and gas phase is higher than a critical value (ξc), andthe lumped mass transfer coefficient decreases with ξ when ξ<ξc. It is also shown that the lumped mass transfercoefficient can be increased by blending porous micro-particles into the sandy soil because of the increasing of theinterfacial area.
文摘Traditional thermal methods of drying food have often led to loss of flavours, nutrients, vitamins, etc., which encourages non-thermal pretreatments such as osmotic dehydration (OD) and/or high electric field (HEF) application to improve the overall product quality. The aim of this study was to evaluate the effect of osmotic dehydration (50% sucrose) with high electric field strengths of 0.5 and 1.0 kV/cm as pretreatments on the drying kinetics and mass transfer of green apples during convective drying at 65 ~C and microwave drying at 1 W/g. The added value of the OD and HEF on the drying kinetics, and the effective mass transfer coefficients of the subsequent drying methods were investigated through this research. The efficacy of these pre-treatments was assessed and compared using cell disintegration index, product texture and thus bring forth new correlations between these pre-treatments and the cell disintegration index using dielectric spectroscopy and its effect on the product texture.