期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
一种基于图像的全自动河道水位估计方法
1
作者 梁存峰 《计算机科学与应用》 2021年第9期2199-2205,共7页
针对水尺图像人工读数不及时、耗费人力的问题,本文提出了一种基于图像的全自动河道水位估计方法。首先使用Faster R-CNN网络检测水尺区域图像,然后对水尺图像进行倾斜调正,最后使用图像处理技术获得水位信息。该方法通过霍夫变换对水... 针对水尺图像人工读数不及时、耗费人力的问题,本文提出了一种基于图像的全自动河道水位估计方法。首先使用Faster R-CNN网络检测水尺区域图像,然后对水尺图像进行倾斜调正,最后使用图像处理技术获得水位信息。该方法通过霍夫变换对水尺图像进行直线检测,根据检测到的直线来实现水尺图像的自动调正,有效解决了由于摄像机拍摄角度不同导致的图像中刻度尺倾斜程度不同的问题;提出一种根据先验知识修正刻度尺图像的思路,根据已知的刻度尺相关信息来自查通过像素级计算得到的刻度尺矩阵是否合理,有效解决了刻度尺图像可能存在的刻度尺磨损、拍摄反光等问题,大大提高了刻度尺读数的可靠性。实验结果表明,本文所提出的河道水位估计方法可以在多种拍摄条件下准确地获得河道的水位信息。 展开更多
关键词 图像 水位估计 Faster R-CNN网络 霍夫变换
下载PDF
极端天气影响下城镇洪水水位快速估计与淹没分析
2
作者 高晓路 李亦秋 +1 位作者 张歆越 鲁春霞 《水土保持学报》 CSCD 北大核心 2023年第4期336-341,350,共7页
由于城镇化的快速发展和极端天气影响,土地利用与防洪安全的矛盾日益突出,城镇洪涝风险增加。以四川省渠县为研究区域,综合运用历史洪水记录与多年水文观测数据重建洪水水位数据序列,快速估计城镇洪水水位并进行淹没分析。通过分析洪水... 由于城镇化的快速发展和极端天气影响,土地利用与防洪安全的矛盾日益突出,城镇洪涝风险增加。以四川省渠县为研究区域,综合运用历史洪水记录与多年水文观测数据重建洪水水位数据序列,快速估计城镇洪水水位并进行淹没分析。通过分析洪水频率与水位的关系、洪水水位差以及不同位置洪峰相关性,更新渠县沿江主要城镇各重现期洪水水位;结合沿江城镇发展定位和预期人口规模,重新核定防护等级和防洪标准。结果表明:渠县主要城镇的洪水水位较历史水平平均上升40 cm,其中100年一遇、50年一遇和10年一遇洪水水位分别上升至254.75,253.48,250.54 m。根据国家防洪标准,渠县主城区和三汇镇的防洪重现期标准应分别提高至50年一遇和20年一遇,其他沿江城镇和乡村的防洪重现期标准保持为10年一遇。与现行防洪标准相比,提高设防标准可减少农地淹没面积超过30 km^(2),减少建设用地淹没面积7~8 km^(2)。 展开更多
关键词 洪涝灾害 水位估计 防洪标准 国土空间规划 淹没分析
下载PDF
水下地形测绘中潮位改正误差分析 被引量:2
3
作者 吴春节 许建宣 王智明 《城市勘测》 2015年第4期117-119,共3页
从宁波市1∶2.5万水下地形图测绘生产项目出发,分析了项目中水深值的潮位改正以及验证外推潮位改正可行性的方法。主要介绍了根据施测海域的潮汐性质合理布设验潮站,利用多个三角分带对同一区域进行潮位改正并对改正结果进行了比对、统... 从宁波市1∶2.5万水下地形图测绘生产项目出发,分析了项目中水深值的潮位改正以及验证外推潮位改正可行性的方法。主要介绍了根据施测海域的潮汐性质合理布设验潮站,利用多个三角分带对同一区域进行潮位改正并对改正结果进行了比对、统计与分析。 展开更多
关键词 潮位控制 水位改正 水位改正误差估计
下载PDF
EL AFFROUN至KHEMIS MILIANA铁路水文分析
4
作者 刘红文 《甘肃科技》 2010年第20期144-146,131,共4页
阿尔及尔至奥兰线上阿福龙-黑密斯车站间线路改造及复线施工项目沿线的排水工程的位置和排水工程的尺寸拟定,合理设置排水工程将有效地排放地表水与边坡汇水,保护铁路,同时将铁路两侧盆地的汇水顺畅地引流和保证灌溉。
关键词 最高流量估计 最高水位估计(正常状态) 排水工程 小流域和排水管
下载PDF
An area-based position and attitude estimation for unmanned aerial vehicle navigation 被引量:8
5
作者 LIU XiaoChun WANG Hou +4 位作者 FU Dan YU QiFeng GUO PengYu LEI ZhiHui SHANG Yang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第5期916-926,共11页
The paper aims to challenge non-GPS navigation problems by using visual sensors and geo-referenced images. An area-based method is proposed to estimate full navigation parameters(FNPs), including attitude, altitude an... The paper aims to challenge non-GPS navigation problems by using visual sensors and geo-referenced images. An area-based method is proposed to estimate full navigation parameters(FNPs), including attitude, altitude and horizontal position, for unmanned aerial vehicle(UAV) navigation. Our method is composed of three main modules: geometric transfer function, local normalized sobel energy image(LNSEI) based objective function and simplex-simulated annealing(SSA) based optimization algorithm. The adoption of relatively rich scene information and LNSEI, makes it possible to yield a solution robustly even in the presence of very noisy cases, such as multi-modal and/or multi-temporal images that differ in the type of visual sensor, season, illumination, weather, and so on, and also to handle the sparsely textured regions where features are barely detected or matched. Simulation experiments using many synthetic images clearly support noise resistance and estimation accuracy, and experimental results using 2367 real images show the maximum estimation error of 5.16(meter) for horizontal position, 9.72(meter) for altitude and 0.82(degree) for attitude. 展开更多
关键词 navigation illumination attitude normalized matching scene handle noisy aerial unmanned
原文传递
Constructing confidence intervals of extreme rainfall quantiles using Bayesian,bootstrap,and profile likelihood approaches 被引量:4
6
作者 CHEN Si LI YaXing +1 位作者 SHIN JiYae KIM TaeWoong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第4期573-585,共13页
Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(C... Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(CIs)are constructed to represent the uncertainty of the estimates.Since the accuracy of CIs depends on the asymptotic normality of the data and is questionable with limited observations in practice,a Bayesian highest posterior density(HPD)interval,bootstrap percentile interval,and profile likelihood(PL)interval have been introduced to analyze the uncertainty that does not depend on the normality assumption.However,comparison studies to investigate their performances in terms of the accuracy and uncertainty of the estimates are scarce.In addition,the strengths,weakness,and conditions necessary for performing each method also must be investigated.Accordingly,in this study,test experiments with simulations from varying parent distributions and different sample sizes were conducted.Then,applications to the annual maximum rainfall(AMR)time series data in South Korea were performed.Five districts with 38-year(1973–2010)AMR observations were fitted by the three aforementioned methods in the application.From both the experimental and application results,the Bayesian method is found to provide the lowest uncertainty of the design level while the PL estimates generally have the highest accuracy but also the largest uncertainty.The bootstrap estimates are usually inferior to the other two methods,but can perform adequately when the distribution model is not heavy-tailed and the sample size is large.The distribution tail behavior and the sample size are clearly found to affect the estimation accuracy and uncertainty.This study presents a comparative result,which can help researchers make decisions in the context of assessing extreme rainfall uncertainties. 展开更多
关键词 BAYESIAN BOOTSTRAP profile likelihood confidence interval frequency analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部