In cultivated rice ( Oryza sativa L.), F-1 pollen sterility is controlled by at least 6 loci of the F, pollen sterility genes. To map S-b, one of loci, rice variety Taichung 65 (T65) carrying S-b(j)/S-b(j) and its nea...In cultivated rice ( Oryza sativa L.), F-1 pollen sterility is controlled by at least 6 loci of the F, pollen sterility genes. To map S-b, one of loci, rice variety Taichung 65 (T65) carrying S-b(j)/S-b(j) and its near-isogenic line TIST2 carrying S-b(i)/S-b(i) were used to develop the mapping population. One hundred and fifty-eight microsatellite markers were selected to survey T65 and TISL2. RM13 on chromosome 5 was found to be polymorphic between them. Cosegregation indicated that RM13 was closely linked with locus S-b. Eleven RFLP markers were selected on the corresponding region from the genetic map of Rice Genome Research Program (RGP) of Japan to convert into sequence-tagged site (STS) markers. Amplicon length polymorphism (ALP) was carried out, but none of them was found to be polymorphic between T65 and TISL2. Then PCR-based RFLP (PBR) was done using six 4-nucleotide recognizing restriction endonucleases. Polymorphism was detected when PCR products of R830STS and R2213SSTS were digested with Taq I. Genetic analysis indicated that the distance between locus S-b and markers, R830STS, RM13 and R2213SSTS were 3.3 cM (centi-Morgan), 5.2 cM and 5.5 cM, respectively. These PCR-based markers could be directly used in marker-assisted selection. The technical system combining genetic mapping and PCR-based marker-assisted selection will facilitate the development of molecular breeding.展开更多
Based on analysis of drilling, logging and field profile data, six sequence boundaries in Permian are identified in Bachu and Tazhong regions of Tarim Basin. All sequence boundaries are of type I sequence bound- aries...Based on analysis of drilling, logging and field profile data, six sequence boundaries in Permian are identified in Bachu and Tazhong regions of Tarim Basin. All sequence boundaries are of type I sequence bound- aries, and are characterized by down cut. According to the six sequence boundaries, the Permian in this area can be divided into 5 third-order sequences, and all the sequences correspond with classic sequence model of Vail. Sequence Psq4 indicates lake transgressive system tract (TST) and highstand system tract (HST). Se- quences Psql, Psq2, Psq3, Psq5 indicate low stand system tract ( LST), transgressive system tract and high- stand system tract. LST is deposited by incised channel infilling with features of fluvial facies. TST is deposited by shore-shallow lake and semi-deep lake. HST is deposited by semi-deep lake, shore-shallow lake and delta. In addition, volcanic rocks are present on the top part of HST in sequence Psq3. Incised channel infilling and deltaic deposits were mainly distributed on western slope of Tadong uplift.展开更多
Motivation: It was found that high accuracy splicing-site recognitio n of rice (Oryza sativa L.) DNA sequence is especially difficult. We describe d a new method for the splicing-site recognition of rice DNA sequences...Motivation: It was found that high accuracy splicing-site recognitio n of rice (Oryza sativa L.) DNA sequence is especially difficult. We describe d a new method for the splicing-site recognition of rice DNA sequences. Method: Bas e d on the intron in eukaryotic organisms conforming to the principle of GT-AG,w e used support vector machines (SVM) to predict the splicing sites. By machine l earning,we built a model and used it to test the effect of the test data set of true and pseudo splicing sites. Results: The prediction accuracy we obtained wa s 87.53% at the true 5' end splicing site and 87.37% at the true 3' end splicing sites. The results suggested that the SVM approach could achieve higher accuracy than the previous approaches.展开更多
Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, c...Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, carded by cv. Aichi Asahi, was evaluated against 612 isolates of M. oryzae collected from 10 Chinese provinces. The Pia gene expresses weak resistance in all the provinces except for Jiangsu. Genomic position-ready marker-based linkage analysis was carded out in a mapping population consisting of 800 F2 plants derived from a cross of Aichi Asahi×Kasalath. The locus was defined in an interval of approximately 90 kb, flanked by markers A16 and A21. Four candidate genes (Pia-1, Pia-2, Pia-3, and Pia-4), all having the R gene conserved structure, were predicted in the interval using the cv. Nipponbare genomic sequence. Four candidate resistance gene (CRG) markers (A17, A25, A26, and A27), derived from the four candidates, were subjected to genotyping with the recombinants detected at the flanking markers. The first three markers completely co-segregated with the Pia locus, and the fourth was absent in the Aichi Asahi genome and disordered with the Pia locus and its flanking markers, indicating that the fourth candidate gene, Pia-4, could be excluded. Co-segregation marker-based genotyping of the three sets of differentials with known R gene genotypes revealed that the genotype of A26 (Pia-3) perfectly matched the R gene genotype of Pia, indicating that Pia-3 is the strongest candidate gene for Pia.展开更多
文摘In cultivated rice ( Oryza sativa L.), F-1 pollen sterility is controlled by at least 6 loci of the F, pollen sterility genes. To map S-b, one of loci, rice variety Taichung 65 (T65) carrying S-b(j)/S-b(j) and its near-isogenic line TIST2 carrying S-b(i)/S-b(i) were used to develop the mapping population. One hundred and fifty-eight microsatellite markers were selected to survey T65 and TISL2. RM13 on chromosome 5 was found to be polymorphic between them. Cosegregation indicated that RM13 was closely linked with locus S-b. Eleven RFLP markers were selected on the corresponding region from the genetic map of Rice Genome Research Program (RGP) of Japan to convert into sequence-tagged site (STS) markers. Amplicon length polymorphism (ALP) was carried out, but none of them was found to be polymorphic between T65 and TISL2. Then PCR-based RFLP (PBR) was done using six 4-nucleotide recognizing restriction endonucleases. Polymorphism was detected when PCR products of R830STS and R2213SSTS were digested with Taq I. Genetic analysis indicated that the distance between locus S-b and markers, R830STS, RM13 and R2213SSTS were 3.3 cM (centi-Morgan), 5.2 cM and 5.5 cM, respectively. These PCR-based markers could be directly used in marker-assisted selection. The technical system combining genetic mapping and PCR-based marker-assisted selection will facilitate the development of molecular breeding.
文摘Based on analysis of drilling, logging and field profile data, six sequence boundaries in Permian are identified in Bachu and Tazhong regions of Tarim Basin. All sequence boundaries are of type I sequence bound- aries, and are characterized by down cut. According to the six sequence boundaries, the Permian in this area can be divided into 5 third-order sequences, and all the sequences correspond with classic sequence model of Vail. Sequence Psq4 indicates lake transgressive system tract (TST) and highstand system tract (HST). Se- quences Psql, Psq2, Psq3, Psq5 indicate low stand system tract ( LST), transgressive system tract and high- stand system tract. LST is deposited by incised channel infilling with features of fluvial facies. TST is deposited by shore-shallow lake and semi-deep lake. HST is deposited by semi-deep lake, shore-shallow lake and delta. In addition, volcanic rocks are present on the top part of HST in sequence Psq3. Incised channel infilling and deltaic deposits were mainly distributed on western slope of Tadong uplift.
文摘Motivation: It was found that high accuracy splicing-site recognitio n of rice (Oryza sativa L.) DNA sequence is especially difficult. We describe d a new method for the splicing-site recognition of rice DNA sequences. Method: Bas e d on the intron in eukaryotic organisms conforming to the principle of GT-AG,w e used support vector machines (SVM) to predict the splicing sites. By machine l earning,we built a model and used it to test the effect of the test data set of true and pseudo splicing sites. Results: The prediction accuracy we obtained wa s 87.53% at the true 5' end splicing site and 87.37% at the true 3' end splicing sites. The results suggested that the SVM approach could achieve higher accuracy than the previous approaches.
基金supported by the National Transgenic Research Projects (Grant No.2009ZX08009-023B)the National Basic Research Program of China(Grant No.2011CB1007)the National Commonweal Specialized Research Project(Grant No.200803008)
文摘Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, carded by cv. Aichi Asahi, was evaluated against 612 isolates of M. oryzae collected from 10 Chinese provinces. The Pia gene expresses weak resistance in all the provinces except for Jiangsu. Genomic position-ready marker-based linkage analysis was carded out in a mapping population consisting of 800 F2 plants derived from a cross of Aichi Asahi×Kasalath. The locus was defined in an interval of approximately 90 kb, flanked by markers A16 and A21. Four candidate genes (Pia-1, Pia-2, Pia-3, and Pia-4), all having the R gene conserved structure, were predicted in the interval using the cv. Nipponbare genomic sequence. Four candidate resistance gene (CRG) markers (A17, A25, A26, and A27), derived from the four candidates, were subjected to genotyping with the recombinants detected at the flanking markers. The first three markers completely co-segregated with the Pia locus, and the fourth was absent in the Aichi Asahi genome and disordered with the Pia locus and its flanking markers, indicating that the fourth candidate gene, Pia-4, could be excluded. Co-segregation marker-based genotyping of the three sets of differentials with known R gene genotypes revealed that the genotype of A26 (Pia-3) perfectly matched the R gene genotype of Pia, indicating that Pia-3 is the strongest candidate gene for Pia.