期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的水位线检测算法 被引量:12
1
作者 廖赟 段清 +1 位作者 刘俊晖 周豪 《计算机应用》 CSCD 北大核心 2020年第S01期274-278,共5页
目前对河道、水库等开放水域的水位进行监控,通常需要在监控地点部署用于测量液位的特殊部件,如水位标尺、压力传感器等设备,无法仅使用摄像头完成水位的监控。为解决以上问题,提出一种基于卷积神经网络(CNN)的水位检测算法,该算法输入... 目前对河道、水库等开放水域的水位进行监控,通常需要在监控地点部署用于测量液位的特殊部件,如水位标尺、压力传感器等设备,无法仅使用摄像头完成水位的监控。为解决以上问题,提出一种基于卷积神经网络(CNN)的水位检测算法,该算法输入为一张包含水位线的静态图像,输出为水位线与检测图像左侧边界交点的预测坐标及水位线与水平方向的夹角预测值,最后根据网络输出的交点坐标及夹角绘制预测水位线。测试结果表明,该方法对检测环境的适应能力极强,即便在夜间下雨,且只由红外光源照明的情况下也能对水位线进行有效预测。使用该方法可以对河道湖泊等开放水域实现全天候非接触式水位连续监控。 展开更多
关键词 深度学习 卷积神经网络 残差网络 水位线检测 水位线识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部