Phosphorus and nitrogen are known causes of eutrophication in rivers, lakes streams and estuaries. The sources of these nutrients are diverse and they include chemical fertilizers, CAFOs (Confmed Animal Feeding Opera...Phosphorus and nitrogen are known causes of eutrophication in rivers, lakes streams and estuaries. The sources of these nutrients are diverse and they include chemical fertilizers, CAFOs (Confmed Animal Feeding Operations), land application of animal and municipal as well as industrial wastewaters. Application of manure slurries to crop land beyond allowable limits could result in high levels of phosphorus and nitrogen in runoff that negatively impact aquatic animals. Municipal wastewater treatment plants are setup to remove these nutrients from domestic and industrial wastewater through a network of treatment processes. Controlling the discharge of phosphorus and nitrogen in wastewater is a key factor in preventing eutrophication. This paper presents work done to enhance a chemical precipitation process that removes over 90% of dissolved phosphorus and nearly 20% of dissolved nitrogen from both synthetic and municipal wastewaters. The objective of the study is to remove nitrogen and phosphorus from wastewater as dittmarite, a value-added mineral fertilizer found in nature. A laboratory procedure was developed that generated significant quantities of dittmarite from various wastewaters. Pure dittrnarite contains nitrogen, phosphorus and magnesium in approximate molar ratios of 1:1.2:1.2 that can support plant growth. It is produced as a wet precipitate from chemical reactions that occur in the wastewater treatment process; it can be dried for proper handling and utilization. Municipal wastewater treatment plants, high volume fish producers, CAFOs and individual rural homeowners could all benefit from this technology for on-site removal of nitrogen and phosphorus from produced wastewaters.展开更多
文摘Phosphorus and nitrogen are known causes of eutrophication in rivers, lakes streams and estuaries. The sources of these nutrients are diverse and they include chemical fertilizers, CAFOs (Confmed Animal Feeding Operations), land application of animal and municipal as well as industrial wastewaters. Application of manure slurries to crop land beyond allowable limits could result in high levels of phosphorus and nitrogen in runoff that negatively impact aquatic animals. Municipal wastewater treatment plants are setup to remove these nutrients from domestic and industrial wastewater through a network of treatment processes. Controlling the discharge of phosphorus and nitrogen in wastewater is a key factor in preventing eutrophication. This paper presents work done to enhance a chemical precipitation process that removes over 90% of dissolved phosphorus and nearly 20% of dissolved nitrogen from both synthetic and municipal wastewaters. The objective of the study is to remove nitrogen and phosphorus from wastewater as dittmarite, a value-added mineral fertilizer found in nature. A laboratory procedure was developed that generated significant quantities of dittmarite from various wastewaters. Pure dittrnarite contains nitrogen, phosphorus and magnesium in approximate molar ratios of 1:1.2:1.2 that can support plant growth. It is produced as a wet precipitate from chemical reactions that occur in the wastewater treatment process; it can be dried for proper handling and utilization. Municipal wastewater treatment plants, high volume fish producers, CAFOs and individual rural homeowners could all benefit from this technology for on-site removal of nitrogen and phosphorus from produced wastewaters.