This study proposes a model to determine the content of cement in mortars using the background of X-ray diffraction (XRD) spectra taking advantage of the fact that fluorescence radiation for the Cu anticathode is di...This study proposes a model to determine the content of cement in mortars using the background of X-ray diffraction (XRD) spectra taking advantage of the fact that fluorescence radiation for the Cu anticathode is different in cement paste and aggregates, and also that cement paste and aggregates have different crystallinity degrees. The method has been tested for limestone mortars with five different types of cement: I52,5N/SR, CEMII/A-L32,5N, IIIA42,5N/SR, IVA(V)32,5N/SR y CAC.展开更多
Effects of water-soluble co-solvents (WSCs)on the properties of water/oil Picketing emulsions were investigated. Picketing emulsions were prepared in the system of 1,2,4-trimethylbenzene (TMB)/hydrophobic sil- ica...Effects of water-soluble co-solvents (WSCs)on the properties of water/oil Picketing emulsions were investigated. Picketing emulsions were prepared in the system of 1,2,4-trimethylbenzene (TMB)/hydrophobic sil- ica/water with varied concentrations of WSCs (ethanol, acetic acid and glycerin). Mean droplet diameter distribu- tions of the obtained emulsions were studied to investigate the effects of WSCs types and concentrations. The results demonstrated that mean droplet diameter distributions decreased at first and then increased with the increase of WSC concentration. Moreover, the effect of WSC concentration on the phase inversion locus was further investi- gated. At the same time, infrared radiation (IR)spectrometer was used to investigate the mechanism. The results showed that the WSC attaching on hydrophobic silica changed the wettability of the particles, which facilitated the formation and phase inversion of the emulsion. The hydrogen bonds between the co-solvent groups attaching on the solid particles made a great effect on the droplet size of the emulsion and strengthened the interaction among emulsifiers. Overall, proper WSC was in favor of the stability of Picketing emulsion.展开更多
Biogeochemical cycling of mercury in the young Three Gorges Reservoir (TGR), China, is strongly considered. Although methylmercury (MMHg) photodegradation (PD) is an important process involved in mercury cycling...Biogeochemical cycling of mercury in the young Three Gorges Reservoir (TGR), China, is strongly considered. Although methylmercury (MMHg) photodegradation (PD) is an important process involved in mercury cycling in this zone, little is known about this process. In situ incubation experiments were therefore performed to quantify the effect of different wave- length radiations and environmental factors on the PD process of MMHg in the water bodies of TGR. It was found that the ef- fect of solar radiation on MMHg PD was highly dependent on wavelength and water depth. All PD-rate constants resulting from each wavelength range decreased rapidly with water depth. For surface water, UV-A radiation (320-400 nm) was the key driver, accounting for 49%-62% of MMHg PD. For the entire water column, both photosynthetically active radiation (PAR, 400-700 nm) and UV-A were responsible for MMHg PD. MMHg PD fluxes peaked in summer (7.5-18 ng m-2 d-1), followed by spring (3.3-8.0 ng m-2 d-1), autumn (1.0-2.7 ng m-2 d-1), and winter (0.060-0.15 ng m-2 d-1). The annual fluxes of MMHg PD were estimated to be 1.1-2.8 μg m-2 at. Filtering the reservoir water and amending it with chemicals (i.e., CV, NO C, and dissolved organic matter (DOM)) showed significant effects on MMHg PD rate constants. Stepwise regression analysis showed that intensity of solar radiation, suspended particulate matter (SPM), DOM, CI-, and NO3- were involved in the PD process. Path analysis clarified the relationship between MMHg PD rate constants and environmental variables, as well as the comparative strength of direct and indirect relationships among variables. The results are of great importance for understanding MMHg cycling characteristics in TGR and also facilitate the understanding of the underlying process, MMHg PD, in natural waters.展开更多
文摘This study proposes a model to determine the content of cement in mortars using the background of X-ray diffraction (XRD) spectra taking advantage of the fact that fluorescence radiation for the Cu anticathode is different in cement paste and aggregates, and also that cement paste and aggregates have different crystallinity degrees. The method has been tested for limestone mortars with five different types of cement: I52,5N/SR, CEMII/A-L32,5N, IIIA42,5N/SR, IVA(V)32,5N/SR y CAC.
基金Supported by the National Basic Research Program of China(“973”Program,No.2012CB720302)
文摘Effects of water-soluble co-solvents (WSCs)on the properties of water/oil Picketing emulsions were investigated. Picketing emulsions were prepared in the system of 1,2,4-trimethylbenzene (TMB)/hydrophobic sil- ica/water with varied concentrations of WSCs (ethanol, acetic acid and glycerin). Mean droplet diameter distribu- tions of the obtained emulsions were studied to investigate the effects of WSCs types and concentrations. The results demonstrated that mean droplet diameter distributions decreased at first and then increased with the increase of WSC concentration. Moreover, the effect of WSC concentration on the phase inversion locus was further investi- gated. At the same time, infrared radiation (IR)spectrometer was used to investigate the mechanism. The results showed that the WSC attaching on hydrophobic silica changed the wettability of the particles, which facilitated the formation and phase inversion of the emulsion. The hydrogen bonds between the co-solvent groups attaching on the solid particles made a great effect on the droplet size of the emulsion and strengthened the interaction among emulsifiers. Overall, proper WSC was in favor of the stability of Picketing emulsion.
基金financially supported by the National Basic Research Program of China(2013CB430004)the National Natural Science Foundation of China(41373113 and 41173116)
文摘Biogeochemical cycling of mercury in the young Three Gorges Reservoir (TGR), China, is strongly considered. Although methylmercury (MMHg) photodegradation (PD) is an important process involved in mercury cycling in this zone, little is known about this process. In situ incubation experiments were therefore performed to quantify the effect of different wave- length radiations and environmental factors on the PD process of MMHg in the water bodies of TGR. It was found that the ef- fect of solar radiation on MMHg PD was highly dependent on wavelength and water depth. All PD-rate constants resulting from each wavelength range decreased rapidly with water depth. For surface water, UV-A radiation (320-400 nm) was the key driver, accounting for 49%-62% of MMHg PD. For the entire water column, both photosynthetically active radiation (PAR, 400-700 nm) and UV-A were responsible for MMHg PD. MMHg PD fluxes peaked in summer (7.5-18 ng m-2 d-1), followed by spring (3.3-8.0 ng m-2 d-1), autumn (1.0-2.7 ng m-2 d-1), and winter (0.060-0.15 ng m-2 d-1). The annual fluxes of MMHg PD were estimated to be 1.1-2.8 μg m-2 at. Filtering the reservoir water and amending it with chemicals (i.e., CV, NO C, and dissolved organic matter (DOM)) showed significant effects on MMHg PD rate constants. Stepwise regression analysis showed that intensity of solar radiation, suspended particulate matter (SPM), DOM, CI-, and NO3- were involved in the PD process. Path analysis clarified the relationship between MMHg PD rate constants and environmental variables, as well as the comparative strength of direct and indirect relationships among variables. The results are of great importance for understanding MMHg cycling characteristics in TGR and also facilitate the understanding of the underlying process, MMHg PD, in natural waters.