Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synt...Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synthesized noble metal-free TiO2 photocatalysts by introducing bismuth nanoparticles as modifiers of a TiO2 single crystal(Bi-SCTiO2).The Bi-SCTiO2 can make full use of the synergistic effect of a small band overlap and low charge carrier density(Bi)with a high conductivity(single crystal),significantly boosting the separation and migration of the photogenerated charge pairs.Therefore,the Bi-SCTiO2 photocatalyst exhibits a significantly enhanced degradation rate(12 times faster)of 4-nitrophenol than a TiO2 single crystal under simulated sunlight irradiation.Notably,the complete removal of phenolic contaminants is achieved in various water matrices,which not only successfully overcomes the incomplete degradation in many reported photocatalytic systems,but also manifests a significant practical potential for sewage disposal.Therefore,this work presents a new insight in designing and constructing noble metal-free decorated semiconductor single-crystal photocatalysts with excellent activity and cyclability.展开更多
The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological backg...The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.展开更多
The paper analyzes the influence of lead toxicity by anaerobic granule sludge inhibition and recovering experiments. The result shows that there are different inhibition types at differ-ent lead contents. Higher lead ...The paper analyzes the influence of lead toxicity by anaerobic granule sludge inhibition and recovering experiments. The result shows that there are different inhibition types at differ-ent lead contents. Higher lead content leads to more inhibition granular sludge, and at the same time, the time of gas recovery is different. Lower lead content per microorganism results in sooner sludge recovery. Microorganisms have a good ability to resist lead toxicity.展开更多
Abstract Goethite widely exists among ocean sediments; it plays an important role in fixing heavy metals and adsorbing organic contaminants. So the understanding of the adsorbing process of water molecule on its surfa...Abstract Goethite widely exists among ocean sediments; it plays an important role in fixing heavy metals and adsorbing organic contaminants. So the understanding of the adsorbing process of water molecule on its surface will be very helpful to further reveal such environmental friendly processes. The configuration, electronic properties and interaction energy of water molecules adsorbed on pnma goethite (010) surface were investigated in detail by using density functional theory on 6-31G (d,p) basis set and projec- tor-augment wave (PAW) method. The mechanism of the interaction between goethite surface and H20 was proposed. Despite the differences in total energy, there are four possible types of water molecule adsorption configurations on goethite (010) surface (Aa, Ab, Ba, Bb), forming coordination bond with surface Fe atom. Results of theoretical modeling indicate that the dissociation process of adsorbed water is an endothermic reaction with high activation energy. The dissociation of adsorbed water molecule is a proton transportation process between water's O atoms and surface. PDOS results indicate that the bonding between 1-120 and (010) surface is due to the overlapping of water's 2p orbitals and Fe's 3d orbitals. These results clarify the mechanism on how adsorbed water is dissociated on the surface of goethite and potentially provide useful information of the surface chemistry of goethite.展开更多
The goal of this work was to assess soil microbial respiration, determined by the assay of community-level physiological profiling in an oxygen-sensitive microplate (O2-CLPP), in response to endogenous C and several...The goal of this work was to assess soil microbial respiration, determined by the assay of community-level physiological profiling in an oxygen-sensitive microplate (O2-CLPP), in response to endogenous C and several individual C substrates in the soils with different organic C contents (as a function of soil type and management practice). We also used the O2-CLPP to determine the respiratory response of these soils to endogenous C and amended C substrates with N addition. A respiratory quotient (RQ) was calculated based on the ratio of the response to endogenous soil C vs. each C-only substrate, and was related to total organic carbon (TOC). For assessing N availability for microbial activity, the effect of N supplementation on soil respiration, expressed as Nr^tio, was calculated based on the response of several substrates to N addition relative to the response without N. Soils clustered in 4 groups after a principal component analysis (PCA), based on TOC and their respiratory responses to substrates and endogenous C. These groups reflected differences among soils in their geographic origin, land use and C content. Calculated RQ values were significantly lower in natural forest soils than in managed soils for most C-only substrates. TOC was negatively correlated with RQ (r = -0.65), indicating that the soils with higher organic matter content increased respiratory efficiency. The N addition in the assay in the absence of C amendment (i. e., only endogenous soil C present) had no effect on microbial respiration in any soil, indicating that these soils were not intrinsically N-limited, but substrate-dependent variation in Nr^tio within soil groups was observed.展开更多
文摘Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synthesized noble metal-free TiO2 photocatalysts by introducing bismuth nanoparticles as modifiers of a TiO2 single crystal(Bi-SCTiO2).The Bi-SCTiO2 can make full use of the synergistic effect of a small band overlap and low charge carrier density(Bi)with a high conductivity(single crystal),significantly boosting the separation and migration of the photogenerated charge pairs.Therefore,the Bi-SCTiO2 photocatalyst exhibits a significantly enhanced degradation rate(12 times faster)of 4-nitrophenol than a TiO2 single crystal under simulated sunlight irradiation.Notably,the complete removal of phenolic contaminants is achieved in various water matrices,which not only successfully overcomes the incomplete degradation in many reported photocatalytic systems,but also manifests a significant practical potential for sewage disposal.Therefore,this work presents a new insight in designing and constructing noble metal-free decorated semiconductor single-crystal photocatalysts with excellent activity and cyclability.
基金Projects(51374093,51104058)supported by the National Natural Science Foundation of ChinaProject(2013CB227903)supported by the National Basic Research Program of China
文摘The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.
基金Supported by The national natural Science Foundation of China (Grant No.50172009).
文摘The paper analyzes the influence of lead toxicity by anaerobic granule sludge inhibition and recovering experiments. The result shows that there are different inhibition types at differ-ent lead contents. Higher lead content leads to more inhibition granular sludge, and at the same time, the time of gas recovery is different. Lower lead content per microorganism results in sooner sludge recovery. Microorganisms have a good ability to resist lead toxicity.
基金financial supports from the National Natural Science Foundation of China (Nos.50673085,20677053)
文摘Abstract Goethite widely exists among ocean sediments; it plays an important role in fixing heavy metals and adsorbing organic contaminants. So the understanding of the adsorbing process of water molecule on its surface will be very helpful to further reveal such environmental friendly processes. The configuration, electronic properties and interaction energy of water molecules adsorbed on pnma goethite (010) surface were investigated in detail by using density functional theory on 6-31G (d,p) basis set and projec- tor-augment wave (PAW) method. The mechanism of the interaction between goethite surface and H20 was proposed. Despite the differences in total energy, there are four possible types of water molecule adsorption configurations on goethite (010) surface (Aa, Ab, Ba, Bb), forming coordination bond with surface Fe atom. Results of theoretical modeling indicate that the dissociation process of adsorbed water is an endothermic reaction with high activation energy. The dissociation of adsorbed water molecule is a proton transportation process between water's O atoms and surface. PDOS results indicate that the bonding between 1-120 and (010) surface is due to the overlapping of water's 2p orbitals and Fe's 3d orbitals. These results clarify the mechanism on how adsorbed water is dissociated on the surface of goethite and potentially provide useful information of the surface chemistry of goethite.
文摘The goal of this work was to assess soil microbial respiration, determined by the assay of community-level physiological profiling in an oxygen-sensitive microplate (O2-CLPP), in response to endogenous C and several individual C substrates in the soils with different organic C contents (as a function of soil type and management practice). We also used the O2-CLPP to determine the respiratory response of these soils to endogenous C and amended C substrates with N addition. A respiratory quotient (RQ) was calculated based on the ratio of the response to endogenous soil C vs. each C-only substrate, and was related to total organic carbon (TOC). For assessing N availability for microbial activity, the effect of N supplementation on soil respiration, expressed as Nr^tio, was calculated based on the response of several substrates to N addition relative to the response without N. Soils clustered in 4 groups after a principal component analysis (PCA), based on TOC and their respiratory responses to substrates and endogenous C. These groups reflected differences among soils in their geographic origin, land use and C content. Calculated RQ values were significantly lower in natural forest soils than in managed soils for most C-only substrates. TOC was negatively correlated with RQ (r = -0.65), indicating that the soils with higher organic matter content increased respiratory efficiency. The N addition in the assay in the absence of C amendment (i. e., only endogenous soil C present) had no effect on microbial respiration in any soil, indicating that these soils were not intrinsically N-limited, but substrate-dependent variation in Nr^tio within soil groups was observed.