The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and ...The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.展开更多
In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hyd...In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hydrological model. GIS-based SWAT (Soil and Water Assessment Tool) model was used to simulate runoff and sediment in the Huanghe River basin. The objective of this paper is to examine the applicability of SWAT model in a large river basin with high sediment runoff modulus,which could reach 770t/(km2·a). A two-stage "Brute Force" optimization procedure was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997,and with input parameters set during the calibration process without any change the model was validated with 1998-1999’s observed data. Coefficient of examination (R2) and Nash-Suttcliffe simulation efficiency (Ens) were used to evaluate model prediction. The evaluation coefficients for simulated flow and sediment,and observed flow and sediment were all above 0.7,which shows that SWAT model could be a useful tool for water resources and soil conservation planning in the Huanghe River basin.展开更多
This paper researches on a kind of control architecture for autonomous undelwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. ...This paper researches on a kind of control architecture for autonomous undelwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. The architecture is organized in three layers: mission layer, task layer and execution layer. State supervisor and task coordinator are two key modules handling discrete events, so we describe these two modules in detail. Finally, we carried out a series of tests to verify this architecture The test results show that the AUV can perform autonomous missions effectively and safely. We can conclude the control architecture is valid and practical.展开更多
S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjus...S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.展开更多
The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthrop...The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall > 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days > 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.展开更多
Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challen...Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.展开更多
By the end of sixties, several satellites were launched to observe the earth; among them the Landsat missions have been important to study natural resources, especially in agriculture. Currently, Landsat 7, with some ...By the end of sixties, several satellites were launched to observe the earth; among them the Landsat missions have been important to study natural resources, especially in agriculture. Currently, Landsat 7, with some problems, and Landsat 5 are useful to evaluate crop development. A project called "Participatory multi-Level EO-assisted tools for Irrigation water management and Agricultural Decision-Support" (PLEIADES) was financed by the European Commission. This project considers eleven countries and 23 research institutions, Mexico being one of the selected countries. Landsat images are a basic tool of this project. Some of the results obtained in this study are presented in this article. By using w^getation indices obtained by the combinations of reflectances in different bands of the electromagnetic spectrum, it has been possible to estimate the behavior of several biophysical parameters of crops which are used to evaluate plant development, water stress, spatial soil variation, and the effect of plagues and crop diseases. To facilitate this process, a visor was developed, named SPIDER (System of Participatory Information Decision support and Expert knowledge for River basin management) whose use in this work is explained.展开更多
In this paper we present two strategies of AUV (Autonomous Underwater Vehicle) region detection and an approach to decompose the detection region according to the direction of the ocean current. In the task of local d...In this paper we present two strategies of AUV (Autonomous Underwater Vehicle) region detection and an approach to decompose the detection region according to the direction of the ocean current. In the task of local detection and identification, the algorithm against the ocean current was proposed. In the tasks of closing obstacle, going back or moving, the fuzzy logic theory was used to solve the effect of ocean current. In one of our strategies the concept of weighted journey based on the angle between heading and ocean current is suggested and the TSP's exact optimal result is utilized to solve the global path planning. Simulations demonstrate the feasibility of this approach.展开更多
Dynamic pressure was applied on emulsion explosive by using an underwater explosion measuring apparatus, and the crystallization quantity was measured by dissolution method after emulsion explosive was pressed; the in...Dynamic pressure was applied on emulsion explosive by using an underwater explosion measuring apparatus, and the crystallization quantity was measured by dissolution method after emulsion explosive was pressed; the influence of emulsi- fier content and type was analyzed. The experimental results show that emulsifier content and type have an important effect on crystallization quantity of emulsion explosive. The crystallization quantity will reduce with Span-g0 content from 2% to 4%, so the demulsification and crystallization will decrease if the emulsifier content improves appropriately and the dynamic pressure resistance will increase. For emulsion explosive emulsified by T-152 and Span-g0, the crystallization quantity with T-152 is less than that of Span-g0 under the same dynamic pressure. This shows that the emulsifying effect ofT-152 is better than Soan-80.展开更多
Water is scarce in Palestine and water saving is becoming very important issue. Water management is one of the promising solutions to save water. The purpose of this work was to study the effect of two types of irriga...Water is scarce in Palestine and water saving is becoming very important issue. Water management is one of the promising solutions to save water. The purpose of this work was to study the effect of two types of irrigation regimes on water consumption, yield and growth parameters of cucumber (Cucumis sativus L.) under open field conditions. Cucumbers were grown on a silty-clay soil in Palestinian local conditions. The irrigation regimes used were farmer based irrigation (FI) and tensiometer based irrigation (TI). The results showed that there were no significant difference in crop yield between FI (3.5 kg/plant) and TI (3.4 kg/plant). Dry matter was 14.7% less in TI treatment than that in FI treatment, while water saving was 35.7% in TI treatment. Thus, proper use of tensiometer could be utilized for a better use and management of water resource. Selection of proper water potential set-points according to the cultivation season is crucial for satisfactory results.展开更多
In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net commun...In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.展开更多
Recently ionic liquids(ILs) are introduced as novel dual function gas hydrate inhibitors. However, no desired gas hydrate inhibition has been reported due to poor IL selection and/or tuning method. Trial & error a...Recently ionic liquids(ILs) are introduced as novel dual function gas hydrate inhibitors. However, no desired gas hydrate inhibition has been reported due to poor IL selection and/or tuning method. Trial & error as well as selection based on existing literature are the methods currently employed for selecting and/or tuning ILs. These methods are probabilistic, time consuming, expensive and may not result in selecting high performance ILs for gas hydrate mitigation. In this work, COSMO-RS is considered as a prescreening tool of ILs for gas hydrate mitigation by predicting the hydrogen bonding energies(E_(HB)) of studied IL inhibitors and comparing the predicted E_(HB) to the depression temperature(?) and induction time. Results show that, predicted EHBand chain length of ILs strongly relate and significantly affect the gas hydrate inhibition depression temperature but correlate moderately(R = 0.70) with average induction time in literature. It is deduced from the results that, ? increases with increasing IL EHBand/or decreases with increasing chain length. However, the cation–anion pairing of ILs also affects IL gas hydrate inhibition performance. Furthermore, a visual and better understanding of IL/water behavior for gas hydrate inhibition in terms of hydrogen bond donor and acceptor interaction analysis is also presented by determining the sigma profile and sigma potential of studied IL cations and anions used for gas hydrate mitigation for easy IL selection.展开更多
基金Supported by 863 Program Item of Hi-tech Research Development Program of China Foundation under Grant No.2002AA602012-1.
文摘The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.
文摘In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hydrological model. GIS-based SWAT (Soil and Water Assessment Tool) model was used to simulate runoff and sediment in the Huanghe River basin. The objective of this paper is to examine the applicability of SWAT model in a large river basin with high sediment runoff modulus,which could reach 770t/(km2·a). A two-stage "Brute Force" optimization procedure was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997,and with input parameters set during the calibration process without any change the model was validated with 1998-1999’s observed data. Coefficient of examination (R2) and Nash-Suttcliffe simulation efficiency (Ens) were used to evaluate model prediction. The evaluation coefficients for simulated flow and sediment,and observed flow and sediment were all above 0.7,which shows that SWAT model could be a useful tool for water resources and soil conservation planning in the Huanghe River basin.
文摘This paper researches on a kind of control architecture for autonomous undelwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. The architecture is organized in three layers: mission layer, task layer and execution layer. State supervisor and task coordinator are two key modules handling discrete events, so we describe these two modules in detail. Finally, we carried out a series of tests to verify this architecture The test results show that the AUV can perform autonomous missions effectively and safely. We can conclude the control architecture is valid and practical.
基金Supported by the National Natural Science Foundation of China under Grant No.50579007
文摘S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.
基金jointly sponsored by the National Natural Science Foundation of China(41030745,41271500)Key Project of Chinese Academy of Sciences(KZZDEW-10-4)+1 种基金Key"135"Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(NIGLAS2012135005)the Scientific Research Foundation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(Y4SL011036)
文摘The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall > 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days > 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.
文摘Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.
文摘By the end of sixties, several satellites were launched to observe the earth; among them the Landsat missions have been important to study natural resources, especially in agriculture. Currently, Landsat 7, with some problems, and Landsat 5 are useful to evaluate crop development. A project called "Participatory multi-Level EO-assisted tools for Irrigation water management and Agricultural Decision-Support" (PLEIADES) was financed by the European Commission. This project considers eleven countries and 23 research institutions, Mexico being one of the selected countries. Landsat images are a basic tool of this project. Some of the results obtained in this study are presented in this article. By using w^getation indices obtained by the combinations of reflectances in different bands of the electromagnetic spectrum, it has been possible to estimate the behavior of several biophysical parameters of crops which are used to evaluate plant development, water stress, spatial soil variation, and the effect of plagues and crop diseases. To facilitate this process, a visor was developed, named SPIDER (System of Participatory Information Decision support and Expert knowledge for River basin management) whose use in this work is explained.
基金Supported by the Research Fund for the Doctoral Program of Higher Education from the Ministry of Education
文摘In this paper we present two strategies of AUV (Autonomous Underwater Vehicle) region detection and an approach to decompose the detection region according to the direction of the ocean current. In the task of local detection and identification, the algorithm against the ocean current was proposed. In the tasks of closing obstacle, going back or moving, the fuzzy logic theory was used to solve the effect of ocean current. In one of our strategies the concept of weighted journey based on the angle between heading and ocean current is suggested and the TSP's exact optimal result is utilized to solve the global path planning. Simulations demonstrate the feasibility of this approach.
基金Supported by the National Natural Science Foundation of China (50574004)
文摘Dynamic pressure was applied on emulsion explosive by using an underwater explosion measuring apparatus, and the crystallization quantity was measured by dissolution method after emulsion explosive was pressed; the influence of emulsi- fier content and type was analyzed. The experimental results show that emulsifier content and type have an important effect on crystallization quantity of emulsion explosive. The crystallization quantity will reduce with Span-g0 content from 2% to 4%, so the demulsification and crystallization will decrease if the emulsifier content improves appropriately and the dynamic pressure resistance will increase. For emulsion explosive emulsified by T-152 and Span-g0, the crystallization quantity with T-152 is less than that of Span-g0 under the same dynamic pressure. This shows that the emulsifying effect ofT-152 is better than Soan-80.
文摘Water is scarce in Palestine and water saving is becoming very important issue. Water management is one of the promising solutions to save water. The purpose of this work was to study the effect of two types of irrigation regimes on water consumption, yield and growth parameters of cucumber (Cucumis sativus L.) under open field conditions. Cucumbers were grown on a silty-clay soil in Palestinian local conditions. The irrigation regimes used were farmer based irrigation (FI) and tensiometer based irrigation (TI). The results showed that there were no significant difference in crop yield between FI (3.5 kg/plant) and TI (3.4 kg/plant). Dry matter was 14.7% less in TI treatment than that in FI treatment, while water saving was 35.7% in TI treatment. Thus, proper use of tensiometer could be utilized for a better use and management of water resource. Selection of proper water potential set-points according to the cultivation season is crucial for satisfactory results.
文摘In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.
文摘Recently ionic liquids(ILs) are introduced as novel dual function gas hydrate inhibitors. However, no desired gas hydrate inhibition has been reported due to poor IL selection and/or tuning method. Trial & error as well as selection based on existing literature are the methods currently employed for selecting and/or tuning ILs. These methods are probabilistic, time consuming, expensive and may not result in selecting high performance ILs for gas hydrate mitigation. In this work, COSMO-RS is considered as a prescreening tool of ILs for gas hydrate mitigation by predicting the hydrogen bonding energies(E_(HB)) of studied IL inhibitors and comparing the predicted E_(HB) to the depression temperature(?) and induction time. Results show that, predicted EHBand chain length of ILs strongly relate and significantly affect the gas hydrate inhibition depression temperature but correlate moderately(R = 0.70) with average induction time in literature. It is deduced from the results that, ? increases with increasing IL EHBand/or decreases with increasing chain length. However, the cation–anion pairing of ILs also affects IL gas hydrate inhibition performance. Furthermore, a visual and better understanding of IL/water behavior for gas hydrate inhibition in terms of hydrogen bond donor and acceptor interaction analysis is also presented by determining the sigma profile and sigma potential of studied IL cations and anions used for gas hydrate mitigation for easy IL selection.