At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet veloci...At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.展开更多
Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combi...Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.展开更多
As a part of boundaries for a free curved surface of a Pelton bucket,the cutout is indispensable to secure the smooth entrance of the unsteady inflow of water jet into the rotating bucket.The cutout of the rotating bu...As a part of boundaries for a free curved surface of a Pelton bucket,the cutout is indispensable to secure the smooth entrance of the unsteady inflow of water jet into the rotating bucket.The cutout of the rotating bucket unsteadily separates a free jet into two branches in both space and time:the impinging branch landing on the relevant bucket surface,and the flow-off branch separated by the cutout toward the preceding bucket.In order to investigate the unsteady jet separation by the cutout three-dimensionally,a semicircular free jet was discretized into 641 nodes of boundary-fitted grids.The position P of impinging jet branch landing on the bucket surface was acquired with the relative velocity W and the water depth D at each node.The trailing edge surface of the flow-off jet branch was simultaneously computed unsteadily.The complicate unsteady interaction of the bucket cutout with the branched free jets was clarified visually with the 3D view of illustrations in order to research the unsteady hydraulic performance of Pelton turbines in space and time.展开更多
基金Projects(51205171,51376081)supported by the National Natural Science Foundation of ChinaProject(1201026B)supported by the Postdoctoral Science Foundation of Jiangsu Province,China
文摘At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.
文摘Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.
基金supported by the National Natural Science Foundation of China(Grant No.50379015)the Major Science and Technology Projects in Zhejiang province(Grant No.2008C11057)
文摘As a part of boundaries for a free curved surface of a Pelton bucket,the cutout is indispensable to secure the smooth entrance of the unsteady inflow of water jet into the rotating bucket.The cutout of the rotating bucket unsteadily separates a free jet into two branches in both space and time:the impinging branch landing on the relevant bucket surface,and the flow-off branch separated by the cutout toward the preceding bucket.In order to investigate the unsteady jet separation by the cutout three-dimensionally,a semicircular free jet was discretized into 641 nodes of boundary-fitted grids.The position P of impinging jet branch landing on the bucket surface was acquired with the relative velocity W and the water depth D at each node.The trailing edge surface of the flow-off jet branch was simultaneously computed unsteadily.The complicate unsteady interaction of the bucket cutout with the branched free jets was clarified visually with the 3D view of illustrations in order to research the unsteady hydraulic performance of Pelton turbines in space and time.