A gel microbead (GMD) cultivation method was employed to cultivate microorganisms from an amphioxus breeding zone in Qingdao, P. R. China. The culture results were compared with those by standard plating method. In th...A gel microbead (GMD) cultivation method was employed to cultivate microorganisms from an amphioxus breeding zone in Qingdao, P. R. China. The culture results were compared with those by standard plating method. In the GMD-based method, the microcolony-forming GMDs were sorted by fluorescence-activated cell sorting (FACS). To further get pure cultures, a subsequent enrichment culture and a streaking purification procedure were conducted on marine R2A medium. Eighty bacterial strains isolated by the GMD-based method were randomly selected for sequencing. These isolates belonged to Alphaproteobacteria (33%), Gammaproteobacteria (44%), Bacteroidetes (11%), Actinobacteria (5%), Firmicutes (5%), Epsilonproteobacteria (1%), and Verrucomicrobia (1%), the last two groups being usually difficult to culture. The 16S rRNA gene sequences revealed a diverse community with 91.1%-100% of the bacterial rRNAs similarities. Thirteen strains were sharing 16S rRNA gene sequence which was less than 97% similar to any other rRNA genes currently deposited in TYP16S database. Seventy isolates derived from the standard plating method fell into 4 different taxonomic groups: Alphaproteobacteria (9%), Gammaproteobacteria (81%), Bacteroidetes (7%) and Firmicutes (3%) with a 16S rRNA gene sequence similarities between 95.8%-100%, in which only 3 strains were sharing 16S rRNA gene sequence of less than 97%. The results indicated that the GMD-based method with subenrichment culture yielded more taxonomic groups and more novel microbial strains, including members of previously rarely cultured groups, when compared with the standard plating method, and that this method markedly improved the bacterial cultivability.展开更多
基金supported by the National High Technology Research and Development Program of China(grant 2007AA09Z434)
文摘A gel microbead (GMD) cultivation method was employed to cultivate microorganisms from an amphioxus breeding zone in Qingdao, P. R. China. The culture results were compared with those by standard plating method. In the GMD-based method, the microcolony-forming GMDs were sorted by fluorescence-activated cell sorting (FACS). To further get pure cultures, a subsequent enrichment culture and a streaking purification procedure were conducted on marine R2A medium. Eighty bacterial strains isolated by the GMD-based method were randomly selected for sequencing. These isolates belonged to Alphaproteobacteria (33%), Gammaproteobacteria (44%), Bacteroidetes (11%), Actinobacteria (5%), Firmicutes (5%), Epsilonproteobacteria (1%), and Verrucomicrobia (1%), the last two groups being usually difficult to culture. The 16S rRNA gene sequences revealed a diverse community with 91.1%-100% of the bacterial rRNAs similarities. Thirteen strains were sharing 16S rRNA gene sequence which was less than 97% similar to any other rRNA genes currently deposited in TYP16S database. Seventy isolates derived from the standard plating method fell into 4 different taxonomic groups: Alphaproteobacteria (9%), Gammaproteobacteria (81%), Bacteroidetes (7%) and Firmicutes (3%) with a 16S rRNA gene sequence similarities between 95.8%-100%, in which only 3 strains were sharing 16S rRNA gene sequence of less than 97%. The results indicated that the GMD-based method with subenrichment culture yielded more taxonomic groups and more novel microbial strains, including members of previously rarely cultured groups, when compared with the standard plating method, and that this method markedly improved the bacterial cultivability.