By the combination of high-temperature organometallic synthesis and phase transfer through complete ligand-exchange withmixed phosphate, highly water-dispersible Fe3O4nanoparticles with narrow size distribution are ob...By the combination of high-temperature organometallic synthesis and phase transfer through complete ligand-exchange withmixed phosphate, highly water-dispersible Fe3O4nanoparticles with narrow size distribution are obtained, which show appli-cable response to magnetic field. IR and -potential characterization of this system provides insights into ligand structures onparticle surface.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 20673031)the National Basic Research Program of China (Grant No. 2011CB932803)
文摘By the combination of high-temperature organometallic synthesis and phase transfer through complete ligand-exchange withmixed phosphate, highly water-dispersible Fe3O4nanoparticles with narrow size distribution are obtained, which show appli-cable response to magnetic field. IR and -potential characterization of this system provides insights into ligand structures onparticle surface.