稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表...稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表明:随着干燥温度和风速的上升,稻谷干燥速率提高,同时对应的有效水分扩散系数越大,分别为5.123×10-12~2.141×10-11m^2/s;扩散活化能从32.94 k J/mol增加至36.30 k J/mol;对比常用的5种谷物干燥模型发现,Logarithmic模型对稻谷薄层干燥的拟合度较好,R2>0.997,RMSE<2.810×10^(-3),同时该模型模拟得出的有效水分扩散系数与实际差值均低于3.8×10^(-13)m^2/s,扩散活化能均低于2.53 k J/mol,与实际值基本吻合。展开更多
花椒热风干燥降速期水分含量低,水分扩散慢,导致热风干燥耗时长。为提高干燥效率,并通过热风与微波组合干燥,分别进行热风干燥、微波干燥和热风-微波组合干燥实验,探究不同干燥参数对花椒失水特性的影响,以确定合理的干燥转换临界点和...花椒热风干燥降速期水分含量低,水分扩散慢,导致热风干燥耗时长。为提高干燥效率,并通过热风与微波组合干燥,分别进行热风干燥、微波干燥和热风-微波组合干燥实验,探究不同干燥参数对花椒失水特性的影响,以确定合理的干燥转换临界点和最优组合干燥模型,并将傅里叶准则数(F_(0))引入Fick第二扩散定律方程,求解有效水分扩散系数(D_(eff))。研究结果表明:热风和微波单独干燥时,升高风温风速和增加微波功率均有利于缩短干燥时间;热风-微波组合干燥花椒时,热风段转微波段的最佳目标含水率即为热风干燥的临界点含水率(65%(w.b)),且高热风温度和高微波功率均可使微波干燥段获得高失水速率;热风-微波组合干燥花椒热风段和微波段对应的最优模型分别为Wang and Singh模型和Page模型,D_(eff)范围分别为1.908×10^(-9)~3.547×10^(-9)m^(2)/s和1.883×10^(-8)~3.321×10^(-8)m^(2)/s。热风-微波组合干燥方式能够显著提高干燥效率,促进花椒内部水分扩散,干燥模型可为优化干燥工艺和设计干燥设备提供理论依据。展开更多
为提升油炒数值模拟的可靠性及准确度,揭示可控操作对烹饪过程参数的影响及关键过程参数对烹饪的影响。通过无量纲水分含量分析解法,测定了中式油炒猪里脊肉过程中的表面传质系数(surface mass transfer coefficient,h_(m))和有效水分...为提升油炒数值模拟的可靠性及准确度,揭示可控操作对烹饪过程参数的影响及关键过程参数对烹饪的影响。通过无量纲水分含量分析解法,测定了中式油炒猪里脊肉过程中的表面传质系数(surface mass transfer coefficient,h_(m))和有效水分扩散系数(effective moisture diffusion coefficient,D_(eff)),分析了预热油温及样品比表面积Ω对h_(m)及D_(eff)的影响;基于已构建的油炒热质传递数学模型、成熟值理论,对比了h_(m)和流体-颗粒表面传热系数(fluid-to-particle surface heat transfer coefficient,hfp)对烹饪成熟控制的影响。结果表明:与油炸过程类似研究的文献数据相比,该研究中hm值偏大在5.927×10^(−6)~2.481×10^(−5) m/s之间,D_(eff)在6.281×10^(−9)~4.148×10^(−8) m^(2)/s之间,D_(eff)活化能(Ea)在24.2~30.6 kJ/mol范围内;预热油温、比表面积Ω对h_(m)及D_(eff)有显著影响(P<0.05),预热油温越高h_(m)和D_(eff)越大,比表面积Ω和h_(m)越大,D_(eff)越小;h_(m)对烹饪成熟控制影响较小,而h_(fp)是烹饪成熟控制的关键过程参数。研究结果为油炒过程模拟提供了重要参数,为烹饪过程控制提供依据。展开更多
文摘稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表明:随着干燥温度和风速的上升,稻谷干燥速率提高,同时对应的有效水分扩散系数越大,分别为5.123×10-12~2.141×10-11m^2/s;扩散活化能从32.94 k J/mol增加至36.30 k J/mol;对比常用的5种谷物干燥模型发现,Logarithmic模型对稻谷薄层干燥的拟合度较好,R2>0.997,RMSE<2.810×10^(-3),同时该模型模拟得出的有效水分扩散系数与实际差值均低于3.8×10^(-13)m^2/s,扩散活化能均低于2.53 k J/mol,与实际值基本吻合。
文摘花椒热风干燥降速期水分含量低,水分扩散慢,导致热风干燥耗时长。为提高干燥效率,并通过热风与微波组合干燥,分别进行热风干燥、微波干燥和热风-微波组合干燥实验,探究不同干燥参数对花椒失水特性的影响,以确定合理的干燥转换临界点和最优组合干燥模型,并将傅里叶准则数(F_(0))引入Fick第二扩散定律方程,求解有效水分扩散系数(D_(eff))。研究结果表明:热风和微波单独干燥时,升高风温风速和增加微波功率均有利于缩短干燥时间;热风-微波组合干燥花椒时,热风段转微波段的最佳目标含水率即为热风干燥的临界点含水率(65%(w.b)),且高热风温度和高微波功率均可使微波干燥段获得高失水速率;热风-微波组合干燥花椒热风段和微波段对应的最优模型分别为Wang and Singh模型和Page模型,D_(eff)范围分别为1.908×10^(-9)~3.547×10^(-9)m^(2)/s和1.883×10^(-8)~3.321×10^(-8)m^(2)/s。热风-微波组合干燥方式能够显著提高干燥效率,促进花椒内部水分扩散,干燥模型可为优化干燥工艺和设计干燥设备提供理论依据。
文摘为提升油炒数值模拟的可靠性及准确度,揭示可控操作对烹饪过程参数的影响及关键过程参数对烹饪的影响。通过无量纲水分含量分析解法,测定了中式油炒猪里脊肉过程中的表面传质系数(surface mass transfer coefficient,h_(m))和有效水分扩散系数(effective moisture diffusion coefficient,D_(eff)),分析了预热油温及样品比表面积Ω对h_(m)及D_(eff)的影响;基于已构建的油炒热质传递数学模型、成熟值理论,对比了h_(m)和流体-颗粒表面传热系数(fluid-to-particle surface heat transfer coefficient,hfp)对烹饪成熟控制的影响。结果表明:与油炸过程类似研究的文献数据相比,该研究中hm值偏大在5.927×10^(−6)~2.481×10^(−5) m/s之间,D_(eff)在6.281×10^(−9)~4.148×10^(−8) m^(2)/s之间,D_(eff)活化能(Ea)在24.2~30.6 kJ/mol范围内;预热油温、比表面积Ω对h_(m)及D_(eff)有显著影响(P<0.05),预热油温越高h_(m)和D_(eff)越大,比表面积Ω和h_(m)越大,D_(eff)越小;h_(m)对烹饪成熟控制影响较小,而h_(fp)是烹饪成熟控制的关键过程参数。研究结果为油炒过程模拟提供了重要参数,为烹饪过程控制提供依据。