面团的形成是面制品生产过程中的重要工序,它的质量直接影响面制品的品质。核磁共振(Nuclear Magnetic Resonance,NMR)技术能直观、快速、精确地反映和体现面团在搅拌过程中水分迁移变化,通过磁共振成像(Magnetic Resonance Imag...面团的形成是面制品生产过程中的重要工序,它的质量直接影响面制品的品质。核磁共振(Nuclear Magnetic Resonance,NMR)技术能直观、快速、精确地反映和体现面团在搅拌过程中水分迁移变化,通过磁共振成像(Magnetic Resonance Imaging,MRI)技术观察面团面筋网络的形成和破坏过程,采用多成分模型分析质子弛豫曲线,将面团中的水分划分为三部分,具有各自不同的自旋-自旋弛豫时间,分别为T21、T22和T23。随着和面时间的延长,面团的他值和质子信号幅度(A)发生相应的变化。研究结果发现,面团的NMR弛豫参数的变化规律,以及面团形成过程的所体现的MR图像对指导和评价工业化面团形成所需要的最佳搅拌时间具有重要意义。实验结果表明:当中速搅拌,水分添加量为面粉的45%,其水温为30℃时,低筋粉的和面时间为15~25min,其面团的质量最佳。展开更多
Interactions between surface water and groundwater are dynamic and complex in large endorheic river watersheds in Northwest China due to the influence of both irrigation practices and the local terrain. These interact...Interactions between surface water and groundwater are dynamic and complex in large endorheic river watersheds in Northwest China due to the influence of both irrigation practices and the local terrain. These interactions interchange numerous times throughout the middle reaches, making streamflow simulation a challenge in endorheic river watersheds. In this study, we modified the linear-reservoir groundwater module in SWAT(Soil and Water Assessment Tools, a widely used hydrological model) with a new nonlinear relationship to better represent groundwater processes; we then applied the original SWAT and modified SWAT to the Heihe River Watershed, the second largest endorheic river watershed in Northwest China, to simulate streamflow. After calibrating both the original SWAT model and the modified SWAT model, we analyzed model performance during two periods: an irrigation period and a non-irrigation period. Our results show that the modified SWAT model with the nonlinear groundwater module performed significantly better during both the irrigation and non-irrigation periods. Moreover, after comparing different runoff components simulated by the two models, the results show that, after the implementation of the new nonlinear groundwater module in SWAT, proportions of runoff components changed-and the groundwater flow had significantly increased, dominating the discharge season. Therefore, SWAT coupled with the non-linear groundwater module represents the complex hydrological process in the study area more realistically. Moreover, the results for various runoff components simulated by the modified SWAT models can be used to describe the hydrological characteristics of lowland areas. This indicates that the modified SWAT model is applicable to simulate complex hydrological process of arid endorheic rivers.展开更多
Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads wh...Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.展开更多
For the most coastal areas where the air is very humid,study on the effect of humidity on the performance of asphalt has its practical significance.However,limited research has been done to investigate the effect of h...For the most coastal areas where the air is very humid,study on the effect of humidity on the performance of asphalt has its practical significance.However,limited research has been done to investigate the effect of humidity on rheological properties of asphalt.In this study,asphalt binders were aged in the pressure aging vessel(PAV)under different conditions of moisture and aging time.Then Dynamic Shear Rheometer(DSR)and Bending Beam Rheometer(BBR)measurements were conducted to obtain the parameters relating to the complex modulus,phase angle,failure temperature,and creep stiffness.It was found that the low temperature performance decreased as evidenced by the results of the creep stiffness.While there were no significant differences among conditioned binders based on complex modulus G*and phase angleδ,it was found that theδvalue increased when the humidity increased from 0% to 80% ,and then theδvalue decreased when the humidity increased to 100% .In addition,the results of the failure temperature indicated that the humidity of 80% would be a critical point for the high temperature performance of the asphalt binders.展开更多
The flow behavior of pressure-driven water infiltration through graphene-based slit nanopores has been studied by molecular simulation.The simulated flow rate is close to the experimental values,which demonstrates the...The flow behavior of pressure-driven water infiltration through graphene-based slit nanopores has been studied by molecular simulation.The simulated flow rate is close to the experimental values,which demonstrates the reasonability of simulation results.Water molecules can spontaneously infiltrate into the nanopores,but an external driving force is generally required to pass through the whole pores.The exit of nanopore has a large obstruction on the water effusion.The flow velocity within the graphene nanochannels does not display monotonous dependence upon the pore width,indicating that the flow is related to the microscopic structures of water confined in the nanopores.Extensive structures of confined water are characterized in order to understand the flow behavior.This simulation improves the understanding of graphene-based nanofluidics,which helps in developing a new type of membrane separation technique.展开更多
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under d...Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.展开更多
文摘面团的形成是面制品生产过程中的重要工序,它的质量直接影响面制品的品质。核磁共振(Nuclear Magnetic Resonance,NMR)技术能直观、快速、精确地反映和体现面团在搅拌过程中水分迁移变化,通过磁共振成像(Magnetic Resonance Imaging,MRI)技术观察面团面筋网络的形成和破坏过程,采用多成分模型分析质子弛豫曲线,将面团中的水分划分为三部分,具有各自不同的自旋-自旋弛豫时间,分别为T21、T22和T23。随着和面时间的延长,面团的他值和质子信号幅度(A)发生相应的变化。研究结果发现,面团的NMR弛豫参数的变化规律,以及面团形成过程的所体现的MR图像对指导和评价工业化面团形成所需要的最佳搅拌时间具有重要意义。实验结果表明:当中速搅拌,水分添加量为面粉的45%,其水温为30℃时,低筋粉的和面时间为15~25min,其面团的质量最佳。
基金Under the auspices of Natural Science Foundation of Qinghai Province(No.2017-ZJ-961Q)National Natural Science Foundation of China(No.91125010,41530752)Scherer Endowment Fund of Department of Geography,Western Michigan University
文摘Interactions between surface water and groundwater are dynamic and complex in large endorheic river watersheds in Northwest China due to the influence of both irrigation practices and the local terrain. These interactions interchange numerous times throughout the middle reaches, making streamflow simulation a challenge in endorheic river watersheds. In this study, we modified the linear-reservoir groundwater module in SWAT(Soil and Water Assessment Tools, a widely used hydrological model) with a new nonlinear relationship to better represent groundwater processes; we then applied the original SWAT and modified SWAT to the Heihe River Watershed, the second largest endorheic river watershed in Northwest China, to simulate streamflow. After calibrating both the original SWAT model and the modified SWAT model, we analyzed model performance during two periods: an irrigation period and a non-irrigation period. Our results show that the modified SWAT model with the nonlinear groundwater module performed significantly better during both the irrigation and non-irrigation periods. Moreover, after comparing different runoff components simulated by the two models, the results show that, after the implementation of the new nonlinear groundwater module in SWAT, proportions of runoff components changed-and the groundwater flow had significantly increased, dominating the discharge season. Therefore, SWAT coupled with the non-linear groundwater module represents the complex hydrological process in the study area more realistically. Moreover, the results for various runoff components simulated by the modified SWAT models can be used to describe the hydrological characteristics of lowland areas. This indicates that the modified SWAT model is applicable to simulate complex hydrological process of arid endorheic rivers.
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903,and 51279224)
文摘Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.
基金supported by the National Natural Science Fund Project of China(NSFC)(No.:51278173)the Natural Science Fund Project of Jiangsu Provincial Communications Department(No.:SBK201120606)
文摘For the most coastal areas where the air is very humid,study on the effect of humidity on the performance of asphalt has its practical significance.However,limited research has been done to investigate the effect of humidity on rheological properties of asphalt.In this study,asphalt binders were aged in the pressure aging vessel(PAV)under different conditions of moisture and aging time.Then Dynamic Shear Rheometer(DSR)and Bending Beam Rheometer(BBR)measurements were conducted to obtain the parameters relating to the complex modulus,phase angle,failure temperature,and creep stiffness.It was found that the low temperature performance decreased as evidenced by the results of the creep stiffness.While there were no significant differences among conditioned binders based on complex modulus G*and phase angleδ,it was found that theδvalue increased when the humidity increased from 0% to 80% ,and then theδvalue decreased when the humidity increased to 100% .In addition,the results of the failure temperature indicated that the humidity of 80% would be a critical point for the high temperature performance of the asphalt binders.
基金Supported by the National Natural Science Foundation of China(21376116)A PAPD Project of Jiangsu Higher Education Institution
文摘The flow behavior of pressure-driven water infiltration through graphene-based slit nanopores has been studied by molecular simulation.The simulated flow rate is close to the experimental values,which demonstrates the reasonability of simulation results.Water molecules can spontaneously infiltrate into the nanopores,but an external driving force is generally required to pass through the whole pores.The exit of nanopore has a large obstruction on the water effusion.The flow velocity within the graphene nanochannels does not display monotonous dependence upon the pore width,indicating that the flow is related to the microscopic structures of water confined in the nanopores.Extensive structures of confined water are characterized in order to understand the flow behavior.This simulation improves the understanding of graphene-based nanofluidics,which helps in developing a new type of membrane separation technique.
基金supported by the Open Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences (Grant No. 201503)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05-01)+1 种基金the National Natural Science Foundation of China (Grant No. 51579163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1426)
文摘Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.