Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (...Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (SSC) could provide relevant structural information about constructed Technosols, such as the water holding capacity of each pore system (macropores and micropores). The objectives of this study were (i) to evaluate the SSC and water retention curve (WRC) to describe the structure of constructed Tech- nosols and (ii) to understand the influence of organic matter content on soil hydro-structural properties. In this study, Technosols were obtained by mixing green waste compost (GWC) with the material excavated from deep horizons of soil (EDH). The CWC was mixed with EDH in six different volumetric percentages from 0% to 50% (GWC/total). The GWC and EDH exhibited highly divergent hydro-structural properties: the SSC was hyperbolic for GWC and sigmoid for EDH. All six mixture treatments (0%, 10%, 20%, 30%, 40% and 50% GWC) exhibited the classical sigmoid shape, revealing two embedded levels of pore systems. The 20% GWC treatment was hydro-structurally similar to the 30% and 40% GWC treatments; so, a large quantity of expansive GWC is unnecessary. The relation with the GWC percentage was a second-degree equation for volumetric available water in micropores, but was linear for volumetric available water in macropores and total volumetric available water. Total volumetric available water in the 50% GWC treatment was twice as high as that in the 0% GWC treatment. By combining SSCs and WRCs, increasing the GWC percentage increased water holding capacity by decreasing the maximum equivalent size of water-saturated micropores at the shrinkage limit and increasing the maximum equivalent size of water-saturated macropores, resulting in an increased range of pore diameter able to retain available water.展开更多
Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shea...Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shear strength of unsaturated soil is crucial in geotechnical design. The soil-water characteristic curve(SWCC) is commonly used to estimate the shear strength of unsaturated soil because the direct measurement is time-consuming and costly. However, the uncertainty associated with the determined SWCC is rarely considered in the estimation of the shear strength. In this paper, the uncertainties of SWCC resulted from different factors are reviewed and discussed. The variability of the estimated shear strength for the unsaturated soil due to the uncertainty of SWCC associated with the best fit process is quantified by using the upper and lower bounds of the determined SWCC. On the other hand, the uncertainties of the estimated shear strength due to different initial void ratios or different confining pressures are quantified by adopting different SWCCs. As a result, it is recommended that the measured SWCC from the conventional Tempe cell or pressure plate needs to be corrected by considering different stress levels in the estimation of the shear strength of unsaturated soil.展开更多
基金the University of Damascus, Syria, for financial support of the Ph.D.(No.1473)
文摘Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (SSC) could provide relevant structural information about constructed Technosols, such as the water holding capacity of each pore system (macropores and micropores). The objectives of this study were (i) to evaluate the SSC and water retention curve (WRC) to describe the structure of constructed Tech- nosols and (ii) to understand the influence of organic matter content on soil hydro-structural properties. In this study, Technosols were obtained by mixing green waste compost (GWC) with the material excavated from deep horizons of soil (EDH). The CWC was mixed with EDH in six different volumetric percentages from 0% to 50% (GWC/total). The GWC and EDH exhibited highly divergent hydro-structural properties: the SSC was hyperbolic for GWC and sigmoid for EDH. All six mixture treatments (0%, 10%, 20%, 30%, 40% and 50% GWC) exhibited the classical sigmoid shape, revealing two embedded levels of pore systems. The 20% GWC treatment was hydro-structurally similar to the 30% and 40% GWC treatments; so, a large quantity of expansive GWC is unnecessary. The relation with the GWC percentage was a second-degree equation for volumetric available water in micropores, but was linear for volumetric available water in macropores and total volumetric available water. Total volumetric available water in the 50% GWC treatment was twice as high as that in the 0% GWC treatment. By combining SSCs and WRCs, increasing the GWC percentage increased water holding capacity by decreasing the maximum equivalent size of water-saturated micropores at the shrinkage limit and increasing the maximum equivalent size of water-saturated macropores, resulting in an increased range of pore diameter able to retain available water.
基金Project supported by the National Natural Science Foundation of China(No.51878160)the National Key Research and Development Program of China(No.2017YFC00703408)the Research Funding from China Huaneng Group Co.Ltd.(No.HNKJ19-H17)。
文摘Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shear strength of unsaturated soil is crucial in geotechnical design. The soil-water characteristic curve(SWCC) is commonly used to estimate the shear strength of unsaturated soil because the direct measurement is time-consuming and costly. However, the uncertainty associated with the determined SWCC is rarely considered in the estimation of the shear strength. In this paper, the uncertainties of SWCC resulted from different factors are reviewed and discussed. The variability of the estimated shear strength for the unsaturated soil due to the uncertainty of SWCC associated with the best fit process is quantified by using the upper and lower bounds of the determined SWCC. On the other hand, the uncertainties of the estimated shear strength due to different initial void ratios or different confining pressures are quantified by adopting different SWCCs. As a result, it is recommended that the measured SWCC from the conventional Tempe cell or pressure plate needs to be corrected by considering different stress levels in the estimation of the shear strength of unsaturated soil.