Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fi...Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.展开更多
[Objective] The aim was to explore the gases exchange characteristic in leaves of soybean cultivars at different yield levels to provide a certain theories basis for high yield breeding and cultivation of soybean cult...[Objective] The aim was to explore the gases exchange characteristic in leaves of soybean cultivars at different yield levels to provide a certain theories basis for high yield breeding and cultivation of soybean cultivars. [Method] Nine soybean cultivars divided into three yield levels were planted under the same environmental condition. At V4(seedling),R2(blooming),R4(pod-bearing),R6(pod-filling) and R7(maturing) growth stages,the net photosynthetic rate (Pn),stomatal conductance (Gs) and transpiration rate (Tr) in soybean leaves were measured with Li-6400 portable photosynthesis system. [Result] At all growth stages,the net photosynthetic rate,stomatal conductance in leaves of high yield soybean cultivars were significantly higher than low yield soybean cultivars. At V4,R2 and R4 stages,transpiration rate in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars; there was no significant difference on transpiration rate in leaves of soybean cultivars at different yield levels at R6 and R7 stage. At V4 and R2 stage,water use efficiency (WUE) in leaves of soybean cultivars at different yield showed a trend of low yield cultivarsmiddle yield cultivarshigh yield cultivars,while it appeared high yield cultivarsmiddle yield cultivarslow yield cultivars at R4,R6 and R7 stage. [Conclusion] The gases exchange capacity in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars,which had provided physiological basis of high yield. The net photosynthetic rate could be used as an selection index of high yield soybean.展开更多
Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadlea...Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.展开更多
Three winter wheat cultivars ( Triticum aestivum L.), representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental condition, and their physiological features w...Three winter wheat cultivars ( Triticum aestivum L.), representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental condition, and their physiological features were investigated. Daily changes of net photosynthetic rate (P-n), transpiration (T-r) in different growth stages were measured in order to find the relationship between leaf photosynthesis and yield. Instantaneous water use efficiency (WUE) of leaf was calculated from P-n/T-r. It is suggested that relationship between photosynthetic rate and yield changed with the developing stages of wheat. High yield wheat cultivar Jingdong 8 (released in the 1990s) had a higher photosynthetic rate ( the maximal P-n increased by 77%) and transpiration rate (the maximal T-r increased by 69%), but a lower WUE than the low yield cultivar Yanda 1817 (released in the 1940s) during the day time at stem elongation stage. However; difference of P-n among the three cultivars changed with wheat growth process. Before 10 o'clock P-n in leaves of Jingdong 8 usually was the highest of the three cultivars, but P-n of Yanda 1817 was the highest after 10 o'clock. At dough ripe stage, P-n in leaves of Yanda. 1817 was the highest among the three cultivars during the whole day. The difference of changing trend of transpiration in three wheat cultivars was similar to P,, but WUE of Yanda 1817 was the highest in those three cultivars, indicating that the higher yield of Jingdong 8 was achieved via a greater consumption of water. Contrary to the cultivars released in the later period, midday depression of photosynthesis was small in Yanda 1817, which might suggest that Yanda 1817 was resistant to photoinhibition. It is possible that photosynthetic potential in leaves of wheat increased as wheat cultivars was improved over the past six decades. However, it became less resistant to photoinhibition.展开更多
On the Loess Plateau of China, a dry soil layer may form due to excess transpiration, leading to degradation of black locust(Robinia pseudoacacia) stands. In order to better manage projects involving black locust, thi...On the Loess Plateau of China, a dry soil layer may form due to excess transpiration, leading to degradation of black locust(Robinia pseudoacacia) stands. In order to better manage projects involving black locust, this study was intended to investigate the response of black locust transpiration rate to soil water availability as affected by meteorological factors using two representative soils(loamy clay and sandy loam) on the Loess Plateau. Four soil water contents were maintained for black locust seedlings grown in pots initially outdoors and then in a climate-controlled chamber, by either drying or irrigating the pots. In both environments, daily transpiration rates were related by a power function to air temperature and by a logistic function to reference evapotranspiration(ET0). Transpiration rates were more susceptible to changes in the meteorological conditions in the sandy loam than in the loamy clay soil. The transpiration rate in the well-watered treatment was greater for black locust grown in the sandy loam than in the loamy clay soil. Normalized transpiration rates were unaffected by ET0 until a critical value of soil water content(θc) was attained; the θc value decreased significantly for the loamy clay soil but increased significantly for the sandy loam soil when ET0 increased. These suggested that the effect of the meteorological condition on the transpiration characteristics of black locust was dependent on soil texture.展开更多
基金national key basic develop-ment of China (G1999043407), grant from the National Natural Science Foundation of China (No. 30271068) and KZ-CX-SW-01-01B of the Chinese Academy of Sciences.
文摘Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.
基金Supported by National Natural Science Foundation of China(30871547)Educational Commission Funded Project in Jilin Province(2006041)~~
文摘[Objective] The aim was to explore the gases exchange characteristic in leaves of soybean cultivars at different yield levels to provide a certain theories basis for high yield breeding and cultivation of soybean cultivars. [Method] Nine soybean cultivars divided into three yield levels were planted under the same environmental condition. At V4(seedling),R2(blooming),R4(pod-bearing),R6(pod-filling) and R7(maturing) growth stages,the net photosynthetic rate (Pn),stomatal conductance (Gs) and transpiration rate (Tr) in soybean leaves were measured with Li-6400 portable photosynthesis system. [Result] At all growth stages,the net photosynthetic rate,stomatal conductance in leaves of high yield soybean cultivars were significantly higher than low yield soybean cultivars. At V4,R2 and R4 stages,transpiration rate in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars; there was no significant difference on transpiration rate in leaves of soybean cultivars at different yield levels at R6 and R7 stage. At V4 and R2 stage,water use efficiency (WUE) in leaves of soybean cultivars at different yield showed a trend of low yield cultivarsmiddle yield cultivarshigh yield cultivars,while it appeared high yield cultivarsmiddle yield cultivarslow yield cultivars at R4,R6 and R7 stage. [Conclusion] The gases exchange capacity in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars,which had provided physiological basis of high yield. The net photosynthetic rate could be used as an selection index of high yield soybean.
基金The project was supported by National Key Basic Development of China (G1999043400) and the grant KZCX-406-4 KZCX1SW01 of the Chinese Academy of Sciences
文摘Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.
文摘Three winter wheat cultivars ( Triticum aestivum L.), representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental condition, and their physiological features were investigated. Daily changes of net photosynthetic rate (P-n), transpiration (T-r) in different growth stages were measured in order to find the relationship between leaf photosynthesis and yield. Instantaneous water use efficiency (WUE) of leaf was calculated from P-n/T-r. It is suggested that relationship between photosynthetic rate and yield changed with the developing stages of wheat. High yield wheat cultivar Jingdong 8 (released in the 1990s) had a higher photosynthetic rate ( the maximal P-n increased by 77%) and transpiration rate (the maximal T-r increased by 69%), but a lower WUE than the low yield cultivar Yanda 1817 (released in the 1940s) during the day time at stem elongation stage. However; difference of P-n among the three cultivars changed with wheat growth process. Before 10 o'clock P-n in leaves of Jingdong 8 usually was the highest of the three cultivars, but P-n of Yanda 1817 was the highest after 10 o'clock. At dough ripe stage, P-n in leaves of Yanda. 1817 was the highest among the three cultivars during the whole day. The difference of changing trend of transpiration in three wheat cultivars was similar to P,, but WUE of Yanda 1817 was the highest in those three cultivars, indicating that the higher yield of Jingdong 8 was achieved via a greater consumption of water. Contrary to the cultivars released in the later period, midday depression of photosynthesis was small in Yanda 1817, which might suggest that Yanda 1817 was resistant to photoinhibition. It is possible that photosynthetic potential in leaves of wheat increased as wheat cultivars was improved over the past six decades. However, it became less resistant to photoinhibition.
基金supported by the National Natural Science Foundation of China(Nos.41171186 and 41101206)
文摘On the Loess Plateau of China, a dry soil layer may form due to excess transpiration, leading to degradation of black locust(Robinia pseudoacacia) stands. In order to better manage projects involving black locust, this study was intended to investigate the response of black locust transpiration rate to soil water availability as affected by meteorological factors using two representative soils(loamy clay and sandy loam) on the Loess Plateau. Four soil water contents were maintained for black locust seedlings grown in pots initially outdoors and then in a climate-controlled chamber, by either drying or irrigating the pots. In both environments, daily transpiration rates were related by a power function to air temperature and by a logistic function to reference evapotranspiration(ET0). Transpiration rates were more susceptible to changes in the meteorological conditions in the sandy loam than in the loamy clay soil. The transpiration rate in the well-watered treatment was greater for black locust grown in the sandy loam than in the loamy clay soil. Normalized transpiration rates were unaffected by ET0 until a critical value of soil water content(θc) was attained; the θc value decreased significantly for the loamy clay soil but increased significantly for the sandy loam soil when ET0 increased. These suggested that the effect of the meteorological condition on the transpiration characteristics of black locust was dependent on soil texture.