A sequential three-step programming method is proposed for determining the minimum flowrate of fresh water and corresponding regenerated water in water-using system of single contaminant with regeneration reuse. In st...A sequential three-step programming method is proposed for determining the minimum flowrate of fresh water and corresponding regenerated water in water-using system of single contaminant with regeneration reuse. In step 1, a programming with the objective of min fws is used to determine the minimum flowrate of fresh water, in which the mathematical representation is a mixed integer nonlinear programming (MINLP1). Then under the same constraints with step 1, a programming with the objective of min freg in step 2 and a programming with the objective of min Cr in step 3 are subsequently used to determine the minimum flowrate of regenerated water and the minimum inlet concentration to regeneration process corresponding to the minimum flowrate of fresh water based on step 1. The method is easy to apply because we only need to change the objective function but keep the constraints constant to go along the following steps after step 1. In addition, the relationship between the fresh water flowrate required, fws and inlet concentration to regeneration process, Cr, is investigated. It is found that there exist three relationships between fws and Cr, which indicate three possibilities for C\>: below the pinch, above the pinch or at the pinch. Therefore, a new conclusion is drawn, which differs from that 'regeneration of water at pinch minimizes fresh water flowrate' derived in literature and indicates that in some cases, regeneration at other point also minimizes fresh water flowrate.展开更多
Experimental design was applied in the optimization of crude oil adsorption from saline waste water using raw bagasse.The application of response surface methodology(RSM) was presented with temperature,salinity of wat...Experimental design was applied in the optimization of crude oil adsorption from saline waste water using raw bagasse.The application of response surface methodology(RSM) was presented with temperature,salinity of water,pH,adsorbent dose,and initial oil content as factors.A quadratic model could be used to approximate the mathematical relationship of crude oil removal on the five significant independent variables.Predicted values and experimental values are found to be in good agreement with R2 of 97.44%.The result of optimization shows that the maximum crude oil removal is equal to 67.38% under the optimal condition of temperature of 46.53 °C,salinity of 37.2 g/L,pH of 3,adsorbent dose of 9 g/L and initial oil content of 300×10-6.展开更多
The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production...The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production of food and cash crops. The objective of this paper was to evaluate the effects of surface and subsurface drip irrigation (SDI) at 5, 20 and 35 cm depths on water's dynamic in soil (Soil moisture distribution, water's stock in soil and irrigation water use efficiency) to produce maize in semiarid climates. Field study was conducted at the Higher Institute of Agronomy of Chott Meriem, Tunisia. The results indicated that soil moisture content under subsurface drip irrigation at 35 cm (T3) depth was more uniform compared to 5 cm (T1) and 20 cm (T2). Moreover, irrigation water use efficiency was higher in this treatment. Indeed, it increased about 18%, 14% and 7% for T3, T2 and T1, respectively when compared with surface drip irrigation. The results of the present study showed that SDI allows uniform soil moisture, minimize the evaporative loss and delivery water directly to the plant root zone and consequently increases use efficiency. Further research is needed in order to determine whether corn production with SDI is feasible in the arid region.展开更多
The current study was carried out at Agricultural College, University of Baghdad in the vegetable farm, Department of Horticulture during 2013 spring growing season. Yield response to irrigation of different crops is ...The current study was carried out at Agricultural College, University of Baghdad in the vegetable farm, Department of Horticulture during 2013 spring growing season. Yield response to irrigation of different crops is of major importance in production planning where water resources are limited. This study aims to determine the effect of different irrigation treatment (deficit irrigation) and potassium humate fertilizer on yield, content of nitrogen, potassium, and phosphor in tuber of potato and water use efficiency in the Abu-Graib Region, Iraq. Potato was grown under drip irrigation with three treatments: irrigation applied when evaporation 75%, 100% and 125% from pan A, and three potassium humate fertilizers: 0, 1.2 and 2.4 kg/ha with three times additions. The seasonal potato evapotranspiration ranged from 267 mm to 372 mm. The drip irrigation treatment had significant effecting tuber yield of potato recorder 29,530, 27,630 and 24,880 kg/ha for 125%, 100% and 75% from pan A evapotranspiration, respectively. Humus fertilizers addition has the lowest value of ETa 309 mm and maximum value of yield 2,930 kg/ha. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) values increased with increasing humus fertilizers, recording 9.92, 14.52, 8.59, 12.42 and 7.51, 10.70 kg/m3 for potassium humate K3 (2.4 kg/ha), K2 (1.2 kg/ha) and KI (0.0 kg/ha), respectively. Plants irrigated with 125% from class pans A evaporation, produced a significant increase in N, P and K content in tubers recorder 0.96%, 0.58% and 1.52%, respectively. Potassium humus-fertilizer significant differences among K1, K2 and K3 on high of plants reached 41.52, 50.08 and 56.39 cm, respectively, number of stems/plant 2.69, 3.22 and 3.78, respectively, leaves area index recorder 2.80, 3.35 and 3.73.展开更多
Leather industry is an important light industry in China.Leather making requires a series of chemical treatment.Degreasing,unhairing and chrome tanning wastewaters are the main portions of tannery wastewater.Reclaimin...Leather industry is an important light industry in China.Leather making requires a series of chemical treatment.Degreasing,unhairing and chrome tanning wastewaters are the main portions of tannery wastewater.Reclaiming and reusing these wastewaters can eliminate 80% of COD,75% of BOD,95% of chromium and 93% of sulfuret,furthermore reduce environment impact,decrease treatment costs,save chemicals and water.Some application methods of wastewater reclamation and reuse for different operations were reported.The suitable reclamation and reuse technologies can enable leather making processes more rational,and realize the recovery and recycle of several chemicals in the tannery.Resourceful utilization of tannery wastewater should mate with renovating production technology,updating equipment,and must be guaranteed sufficiently by environmental protection measures.展开更多
The association between the growth and water-use efficiency in three populations of C. odorata in Veracruz Mexico (La Antigua, Misantla and Catemaco) from two agroforestry system sites was studied, one in associatio...The association between the growth and water-use efficiency in three populations of C. odorata in Veracruz Mexico (La Antigua, Misantla and Catemaco) from two agroforestry system sites was studied, one in association with corn and another with pipiain. TRP (transpiration), gs (stomatal conductivity), CO2A (CO2 assimilation), WUE (water use efficiency), height, coverage and stem diameter were measured. The populafon of La Antigua associated with pipian presented the highest WUE (7.13 μmol CO2 m2-sl/mmol H20 m2.sl), while the population of Catemaco reached high values (10 μmol CO2 m2 sl/mmol H20 m2-s1) in the site associated with corn, the populations established with corn presented a great growth in height and stem diameter. Based on the physiological responses and growth of the studied populations, the towns of La Antigua and Catemaco may be recommended for the establishment of commercial plantations.展开更多
This paper summarizes the selected results of an extensive investigation of application of two methods (hydrothermal and mechanochemical) assisted by calcination for synthesizing belite cement from reactive mixtures...This paper summarizes the selected results of an extensive investigation of application of two methods (hydrothermal and mechanochemical) assisted by calcination for synthesizing belite cement from reactive mixtures (CaO/SiO2 molar ratio of 2) consisting of various waste kinds from fluidized brown coal combustion in Slovakian power plant and CaO addition. Based on XRD diffraction patterns and infrared spectra ofpre-treatment products, the formation of the new profiles corresponding to CSH phases with low degree of ordering as belite precursors after hydrothermal treatment as well as metastables calcium silicates and aluminosilicates in mechanosynthesized products was confirmed. Calcination of hydrothermally treated products led to transformation of CSH phases to wollastonite (CS), belite and gehlenite phase, whereas creation oft^- and I^-C2S or wollastonite in milled reactive mixture took place. Differences in phase composition of products before and after calcination depend upon waste quality and precursor's synthesis conditions. Bottom ash isn't suitable as raw material for synthesizing belite phase because of high CaO content fixed in anhydrite form (44.1%). Coal fly ash with low CaO content in anhydrite form (4.2%) and its mechanochemical or hydrothermal treatment in combination with subsequent heating offer opportunities for the utilization of coal fly ash as raw material for belite production.展开更多
In order to quantify the virtual water part which is contained in the imported cereals, compared with the hydraulic potentialities which are annually mobilised through the national territory, and on the basis of the a...In order to quantify the virtual water part which is contained in the imported cereals, compared with the hydraulic potentialities which are annually mobilised through the national territory, and on the basis of the agricultural statistics, we have determined the average quantities of the imported cereals per year in order to determine the virtual water volume that these cereals bind. The water needs of the cereals which are produced in Algeria have been calculated by the Cropwat software, in order to define the equivalent quantities of water in their production on the national scale. The obtained results confirm the importance of the annually imported virtual water, through the imported cereals, comparing with the national hydraulic potentialities. Our study shows also that in spite of the strategic importance of the virtual water in the imported cereals, a diminution has to take place, on the average term, by an improvement of the use efficiency of the precipitations (green virtual water) using the best mastery of the technical itinerary in general, and also the efficient use of precipitations in particular.展开更多
Petrochemicals play a vital role in the economy of any nation. The products of the industry are the building blocks in many industries as they deepen the forward and backward linkages of the petroleum sector with the ...Petrochemicals play a vital role in the economy of any nation. The products of the industry are the building blocks in many industries as they deepen the forward and backward linkages of the petroleum sector with the rest of the economy. The industry uses a variety of hydrocarbon feedstock such as different cuts of naphtha from refinery and natural gas. One of the problems facing the industry is lack of reliable feedstock supplies. Nigeria has the potential to be a major petrochemicals producer. With proven gas reserves currently estimated at 187 tcf, not much has been accomplished with respect to the effective exploitation and utilization of this resource as most of the nation's natural gas production has been flared, liquefied for export or re-injected to enhance greater crude oil recovery. It has become imperative to further find ways to exploit and utilize the nation's natural gas reserves and translate it to the improvement of the nation's economy. Steam reforming of natural gas is one of the avenues for conversion of natural gas to petrochemicals. This paper, however, reviews various ways of utilizing natural gas, examines the process details of steam reforming of natural gas as a route to optimized natural gas utilization and industrialization in Nigeria. Syngas (synthesis gas) is a versatile feedstock for most petrochemicals and chemical intermediates. Thus utilizing natural gas in this way would strengthen the petrochemical industry making it possible for the country to change from raw materials to value-added products supplier, boost the economy and solve the "hydra-headed" problem of unemployment in Nigeria with its multiplier employment effect.展开更多
In Mediterranean countries forage crops and temporary grasslands are the most important supply even if severe moisture stress is common. In Italy, forage systems are various and differently located from North to South...In Mediterranean countries forage crops and temporary grasslands are the most important supply even if severe moisture stress is common. In Italy, forage systems are various and differently located from North to South of the mainland due to strong influence by rainfall distribution. Grasses and grazing cover 3.4 million ha of Italian utilized agricultural area (UAA) while alternated grassland and grass meadows cover 1.9 million ha. Most of grasslands are located in hilly and mountainous areas and are important for reducing erosion. Italy has a great longitudinal extension which accounts for a great variety of climate systems and soils: the northern regions have a humid subtropical climate and differ greatly from the south part that fits the Mediterranean climate profile. During the last 100/150 years the Italian climate has become warmer and drier showing an increase of erratic precipitation intensity. The future of breeding of forage grasses and legumes should be focused on higher nutrient use efficiencies and increased sustainability. New applications of genomics and bioinformatics will allow advanced breeding strategies. Over the past 15 years breeders have displayed a constant interest in forage species while a greater interest has risen in turfgrass varieties. Seed production of Italian herbages does not cover the requirements of the market. More specific value for cultivation and use (VCU) tests might be an effective means to improve the screening of candidate varieties. The goal is the selection of varieties able to withstand the stress of climate change, have better water and nitrogen use efficiency and resilience of vegetation cover.展开更多
Water yield calculation and mapping are of great importance to water resource planning and management and hydropower station construction. A water yield model based on InVEST was employed to estimate water runoff in t...Water yield calculation and mapping are of great importance to water resource planning and management and hydropower station construction. A water yield model based on InVEST was employed to estimate water runoff in the Xitiaoxi River basin. The data included land use and land cover, average annual precipitation and potential evapotranspiration, soil depth, and plant available water content. In order to test model accuracy the natural runoff of Xitiaoxi River was estimated based on linear regression relation of rainfall-runoff in a ‘reference period’. After repeated validation, when the Z value was 6.5 the water yield was 8.30 E+8 m3 and this was a smaller difference with natural runoff. From the distribution of water yield, south and southwestern areas of the watershed had higher water yield volumes per hectare.展开更多
The paper explores the contribution of different factors affecting water use efficiency(WUE) of each sector and explores ways to improve WUE.A new Multi-Sector and Multi-Factors Logarithmic Mean Divisia Index(MLMDI) d...The paper explores the contribution of different factors affecting water use efficiency(WUE) of each sector and explores ways to improve WUE.A new Multi-Sector and Multi-Factors Logarithmic Mean Divisia Index(MLMDI) decomposition method was developed that enabled the identification of WUE by sector into 11 factors in terms of their order of importance.An application to Beijing at the 19 sector level was made for the period between 2002–2007.The water conservation effects of six measures proposed during the 12th-Five-Year-Plan of Beijing were assessed.It was found that,to decrease the transferred out and export of agriculture products and increasing water prices would be the top two most effective measures to promote water conservation.While the adjustment of direct water use structure would contribute in less significant way,the adjustment of industrial structure would have a negative effect.展开更多
Aims Competition among plants in a community usually depends on their nitrogen(N)-use efficiency(NUE)and water-use efficiency(WUE)in arid and semi-arid regions.Artemisia frigida is an indicator species in heavily degr...Aims Competition among plants in a community usually depends on their nitrogen(N)-use efficiency(NUE)and water-use efficiency(WUE)in arid and semi-arid regions.Artemisia frigida is an indicator species in heavily degraded grassland,however,how its NUE and WUE respond to N addition in different successional stages is still unclear,especially with mowing,a common management practice in semi-arid grasslands.Methods Based on a long-term controlled experiment with N addition and mowing in an abandoned cropland from 2006 to 2013,we investigated the NUE and WUE oi A.frigida in two patches(i.e.grass and herb patches)in 2013 which represented two potential successional stages from herb to grass communities.The coverage of A.frigida was higher(about 50%)in the herb patch than in the grass patch(about 10%).Stable isotopic C(δ^(13)C)and N(δ^(15)N)as well as C and N pools were measured in plants and soils.NUE was calculated as leaf C/N,and leafδ^(13)C values were used as a proxy for WUE.Important Findings N addition did not affect WUE of A.frigida,but significantly decreased NUE by 42.9%and 26.6%in grass and herb patches,respectively.The response of NUE to N addition was related to altering utilization of different N sources(NH_(4)^(+)vs.NO_(3)^(-))by A.frigida according to the changed relationship between leafδ^(15)N/soil 615N and NUE.Mowing had no effect on NUE regardless of N addition,but significantly increased WUE by 2.3%for A.frigida without N addition in the grass patch.The addition of N reduced the positive effect of mowing on its WUE in grass patch.Our results suggested that decreased NUE and/or WUE of A.frigida under mowing and N addition could reduce its competition,and further accelerate restoration succession from the abandoned cropland to natural grassland in the semi-arid region.展开更多
基金Supported by the National Fundamental Research Development Program of China(No.2000026308).
文摘A sequential three-step programming method is proposed for determining the minimum flowrate of fresh water and corresponding regenerated water in water-using system of single contaminant with regeneration reuse. In step 1, a programming with the objective of min fws is used to determine the minimum flowrate of fresh water, in which the mathematical representation is a mixed integer nonlinear programming (MINLP1). Then under the same constraints with step 1, a programming with the objective of min freg in step 2 and a programming with the objective of min Cr in step 3 are subsequently used to determine the minimum flowrate of regenerated water and the minimum inlet concentration to regeneration process corresponding to the minimum flowrate of fresh water based on step 1. The method is easy to apply because we only need to change the objective function but keep the constraints constant to go along the following steps after step 1. In addition, the relationship between the fresh water flowrate required, fws and inlet concentration to regeneration process, Cr, is investigated. It is found that there exist three relationships between fws and Cr, which indicate three possibilities for C\>: below the pinch, above the pinch or at the pinch. Therefore, a new conclusion is drawn, which differs from that 'regeneration of water at pinch minimizes fresh water flowrate' derived in literature and indicates that in some cases, regeneration at other point also minimizes fresh water flowrate.
文摘Experimental design was applied in the optimization of crude oil adsorption from saline waste water using raw bagasse.The application of response surface methodology(RSM) was presented with temperature,salinity of water,pH,adsorbent dose,and initial oil content as factors.A quadratic model could be used to approximate the mathematical relationship of crude oil removal on the five significant independent variables.Predicted values and experimental values are found to be in good agreement with R2 of 97.44%.The result of optimization shows that the maximum crude oil removal is equal to 67.38% under the optimal condition of temperature of 46.53 °C,salinity of 37.2 g/L,pH of 3,adsorbent dose of 9 g/L and initial oil content of 300×10-6.
文摘The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production of food and cash crops. The objective of this paper was to evaluate the effects of surface and subsurface drip irrigation (SDI) at 5, 20 and 35 cm depths on water's dynamic in soil (Soil moisture distribution, water's stock in soil and irrigation water use efficiency) to produce maize in semiarid climates. Field study was conducted at the Higher Institute of Agronomy of Chott Meriem, Tunisia. The results indicated that soil moisture content under subsurface drip irrigation at 35 cm (T3) depth was more uniform compared to 5 cm (T1) and 20 cm (T2). Moreover, irrigation water use efficiency was higher in this treatment. Indeed, it increased about 18%, 14% and 7% for T3, T2 and T1, respectively when compared with surface drip irrigation. The results of the present study showed that SDI allows uniform soil moisture, minimize the evaporative loss and delivery water directly to the plant root zone and consequently increases use efficiency. Further research is needed in order to determine whether corn production with SDI is feasible in the arid region.
文摘The current study was carried out at Agricultural College, University of Baghdad in the vegetable farm, Department of Horticulture during 2013 spring growing season. Yield response to irrigation of different crops is of major importance in production planning where water resources are limited. This study aims to determine the effect of different irrigation treatment (deficit irrigation) and potassium humate fertilizer on yield, content of nitrogen, potassium, and phosphor in tuber of potato and water use efficiency in the Abu-Graib Region, Iraq. Potato was grown under drip irrigation with three treatments: irrigation applied when evaporation 75%, 100% and 125% from pan A, and three potassium humate fertilizers: 0, 1.2 and 2.4 kg/ha with three times additions. The seasonal potato evapotranspiration ranged from 267 mm to 372 mm. The drip irrigation treatment had significant effecting tuber yield of potato recorder 29,530, 27,630 and 24,880 kg/ha for 125%, 100% and 75% from pan A evapotranspiration, respectively. Humus fertilizers addition has the lowest value of ETa 309 mm and maximum value of yield 2,930 kg/ha. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) values increased with increasing humus fertilizers, recording 9.92, 14.52, 8.59, 12.42 and 7.51, 10.70 kg/m3 for potassium humate K3 (2.4 kg/ha), K2 (1.2 kg/ha) and KI (0.0 kg/ha), respectively. Plants irrigated with 125% from class pans A evaporation, produced a significant increase in N, P and K content in tubers recorder 0.96%, 0.58% and 1.52%, respectively. Potassium humus-fertilizer significant differences among K1, K2 and K3 on high of plants reached 41.52, 50.08 and 56.39 cm, respectively, number of stems/plant 2.69, 3.22 and 3.78, respectively, leaves area index recorder 2.80, 3.35 and 3.73.
文摘Leather industry is an important light industry in China.Leather making requires a series of chemical treatment.Degreasing,unhairing and chrome tanning wastewaters are the main portions of tannery wastewater.Reclaiming and reusing these wastewaters can eliminate 80% of COD,75% of BOD,95% of chromium and 93% of sulfuret,furthermore reduce environment impact,decrease treatment costs,save chemicals and water.Some application methods of wastewater reclamation and reuse for different operations were reported.The suitable reclamation and reuse technologies can enable leather making processes more rational,and realize the recovery and recycle of several chemicals in the tannery.Resourceful utilization of tannery wastewater should mate with renovating production technology,updating equipment,and must be guaranteed sufficiently by environmental protection measures.
文摘The association between the growth and water-use efficiency in three populations of C. odorata in Veracruz Mexico (La Antigua, Misantla and Catemaco) from two agroforestry system sites was studied, one in association with corn and another with pipiain. TRP (transpiration), gs (stomatal conductivity), CO2A (CO2 assimilation), WUE (water use efficiency), height, coverage and stem diameter were measured. The populafon of La Antigua associated with pipian presented the highest WUE (7.13 μmol CO2 m2-sl/mmol H20 m2.sl), while the population of Catemaco reached high values (10 μmol CO2 m2 sl/mmol H20 m2-s1) in the site associated with corn, the populations established with corn presented a great growth in height and stem diameter. Based on the physiological responses and growth of the studied populations, the towns of La Antigua and Catemaco may be recommended for the establishment of commercial plantations.
文摘This paper summarizes the selected results of an extensive investigation of application of two methods (hydrothermal and mechanochemical) assisted by calcination for synthesizing belite cement from reactive mixtures (CaO/SiO2 molar ratio of 2) consisting of various waste kinds from fluidized brown coal combustion in Slovakian power plant and CaO addition. Based on XRD diffraction patterns and infrared spectra ofpre-treatment products, the formation of the new profiles corresponding to CSH phases with low degree of ordering as belite precursors after hydrothermal treatment as well as metastables calcium silicates and aluminosilicates in mechanosynthesized products was confirmed. Calcination of hydrothermally treated products led to transformation of CSH phases to wollastonite (CS), belite and gehlenite phase, whereas creation oft^- and I^-C2S or wollastonite in milled reactive mixture took place. Differences in phase composition of products before and after calcination depend upon waste quality and precursor's synthesis conditions. Bottom ash isn't suitable as raw material for synthesizing belite phase because of high CaO content fixed in anhydrite form (44.1%). Coal fly ash with low CaO content in anhydrite form (4.2%) and its mechanochemical or hydrothermal treatment in combination with subsequent heating offer opportunities for the utilization of coal fly ash as raw material for belite production.
文摘In order to quantify the virtual water part which is contained in the imported cereals, compared with the hydraulic potentialities which are annually mobilised through the national territory, and on the basis of the agricultural statistics, we have determined the average quantities of the imported cereals per year in order to determine the virtual water volume that these cereals bind. The water needs of the cereals which are produced in Algeria have been calculated by the Cropwat software, in order to define the equivalent quantities of water in their production on the national scale. The obtained results confirm the importance of the annually imported virtual water, through the imported cereals, comparing with the national hydraulic potentialities. Our study shows also that in spite of the strategic importance of the virtual water in the imported cereals, a diminution has to take place, on the average term, by an improvement of the use efficiency of the precipitations (green virtual water) using the best mastery of the technical itinerary in general, and also the efficient use of precipitations in particular.
文摘Petrochemicals play a vital role in the economy of any nation. The products of the industry are the building blocks in many industries as they deepen the forward and backward linkages of the petroleum sector with the rest of the economy. The industry uses a variety of hydrocarbon feedstock such as different cuts of naphtha from refinery and natural gas. One of the problems facing the industry is lack of reliable feedstock supplies. Nigeria has the potential to be a major petrochemicals producer. With proven gas reserves currently estimated at 187 tcf, not much has been accomplished with respect to the effective exploitation and utilization of this resource as most of the nation's natural gas production has been flared, liquefied for export or re-injected to enhance greater crude oil recovery. It has become imperative to further find ways to exploit and utilize the nation's natural gas reserves and translate it to the improvement of the nation's economy. Steam reforming of natural gas is one of the avenues for conversion of natural gas to petrochemicals. This paper, however, reviews various ways of utilizing natural gas, examines the process details of steam reforming of natural gas as a route to optimized natural gas utilization and industrialization in Nigeria. Syngas (synthesis gas) is a versatile feedstock for most petrochemicals and chemical intermediates. Thus utilizing natural gas in this way would strengthen the petrochemical industry making it possible for the country to change from raw materials to value-added products supplier, boost the economy and solve the "hydra-headed" problem of unemployment in Nigeria with its multiplier employment effect.
文摘In Mediterranean countries forage crops and temporary grasslands are the most important supply even if severe moisture stress is common. In Italy, forage systems are various and differently located from North to South of the mainland due to strong influence by rainfall distribution. Grasses and grazing cover 3.4 million ha of Italian utilized agricultural area (UAA) while alternated grassland and grass meadows cover 1.9 million ha. Most of grasslands are located in hilly and mountainous areas and are important for reducing erosion. Italy has a great longitudinal extension which accounts for a great variety of climate systems and soils: the northern regions have a humid subtropical climate and differ greatly from the south part that fits the Mediterranean climate profile. During the last 100/150 years the Italian climate has become warmer and drier showing an increase of erratic precipitation intensity. The future of breeding of forage grasses and legumes should be focused on higher nutrient use efficiencies and increased sustainability. New applications of genomics and bioinformatics will allow advanced breeding strategies. Over the past 15 years breeders have displayed a constant interest in forage species while a greater interest has risen in turfgrass varieties. Seed production of Italian herbages does not cover the requirements of the market. More specific value for cultivation and use (VCU) tests might be an effective means to improve the screening of candidate varieties. The goal is the selection of varieties able to withstand the stress of climate change, have better water and nitrogen use efficiency and resilience of vegetation cover.
基金National Major Water Pollution Control Project(No.2008ZX07526-007)
文摘Water yield calculation and mapping are of great importance to water resource planning and management and hydropower station construction. A water yield model based on InVEST was employed to estimate water runoff in the Xitiaoxi River basin. The data included land use and land cover, average annual precipitation and potential evapotranspiration, soil depth, and plant available water content. In order to test model accuracy the natural runoff of Xitiaoxi River was estimated based on linear regression relation of rainfall-runoff in a ‘reference period’. After repeated validation, when the Z value was 6.5 the water yield was 8.30 E+8 m3 and this was a smaller difference with natural runoff. From the distribution of water yield, south and southwestern areas of the watershed had higher water yield volumes per hectare.
基金supported by the National Natural Science Foundation of China under Grant Nos.71173210,71473244,and 61273208
文摘The paper explores the contribution of different factors affecting water use efficiency(WUE) of each sector and explores ways to improve WUE.A new Multi-Sector and Multi-Factors Logarithmic Mean Divisia Index(MLMDI) decomposition method was developed that enabled the identification of WUE by sector into 11 factors in terms of their order of importance.An application to Beijing at the 19 sector level was made for the period between 2002–2007.The water conservation effects of six measures proposed during the 12th-Five-Year-Plan of Beijing were assessed.It was found that,to decrease the transferred out and export of agriculture products and increasing water prices would be the top two most effective measures to promote water conservation.While the adjustment of direct water use structure would contribute in less significant way,the adjustment of industrial structure would have a negative effect.
基金This work was supported by National Natural Science Foundation of China(31770526,31872406)the Chinese National Key Development Program for Basic Research(2016YFC0500703).
文摘Aims Competition among plants in a community usually depends on their nitrogen(N)-use efficiency(NUE)and water-use efficiency(WUE)in arid and semi-arid regions.Artemisia frigida is an indicator species in heavily degraded grassland,however,how its NUE and WUE respond to N addition in different successional stages is still unclear,especially with mowing,a common management practice in semi-arid grasslands.Methods Based on a long-term controlled experiment with N addition and mowing in an abandoned cropland from 2006 to 2013,we investigated the NUE and WUE oi A.frigida in two patches(i.e.grass and herb patches)in 2013 which represented two potential successional stages from herb to grass communities.The coverage of A.frigida was higher(about 50%)in the herb patch than in the grass patch(about 10%).Stable isotopic C(δ^(13)C)and N(δ^(15)N)as well as C and N pools were measured in plants and soils.NUE was calculated as leaf C/N,and leafδ^(13)C values were used as a proxy for WUE.Important Findings N addition did not affect WUE of A.frigida,but significantly decreased NUE by 42.9%and 26.6%in grass and herb patches,respectively.The response of NUE to N addition was related to altering utilization of different N sources(NH_(4)^(+)vs.NO_(3)^(-))by A.frigida according to the changed relationship between leafδ^(15)N/soil 615N and NUE.Mowing had no effect on NUE regardless of N addition,but significantly increased WUE by 2.3%for A.frigida without N addition in the grass patch.The addition of N reduced the positive effect of mowing on its WUE in grass patch.Our results suggested that decreased NUE and/or WUE of A.frigida under mowing and N addition could reduce its competition,and further accelerate restoration succession from the abandoned cropland to natural grassland in the semi-arid region.