Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid...Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid dynamics under variouscombinations of inlet diameter and inlet velocity.The results showed that a high sharpness of classification was achieved withspecific inlet diameter and inlet velocity.The separation efficiency of the coarse particles by underflow significantly decreased wheninlet had an oversize diameter owing to a stronger short-circuit flow.It is resulted from the chaotic flow and the stronger pressuregradient around the vortex finder.Meanwhile,a low separation efficiency of the fine particles by overflow was achieved when inletvelocity was high,which indicated a low sharpness caused by the overlarge centrifugal force.展开更多
The effects of hydrostatic pressure of SrWeO3 are investigated by means of generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method within the framework of density func...The effects of hydrostatic pressure of SrWeO3 are investigated by means of generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method within the framework of density functional theory (DFT). Magnetic phase diagrams and structural parameters of SrTcO3 as a function of pressure are predicted. The magnetic ground state of SrTcO3 is found to keep in a G-type antiferromagnetic (G-AFM) structure under the pressure varying from 0 to 100 GPa. With the increase of the pressure, magnetic exchange energy increases, indicating a higher magnetic ordering temperature for SrTcO3 under a larger pressure. Besides the volume of the unit cell, lattice constants, and the bond length, the angles between typical Tc-O-Tc and Sr-O-Sr also decrease with the pressure, leading to strong structural distortions. Very obvious displace- ments of Sr and O atoms are observed under the pressure. Our work provides necessary understanding on electronic structures of SrTcO3 under high pressures.展开更多
基金Project(2011AA06A107)supported by the National High Technology Research and Development Program of ChinaProject(2014M551348)supported by China Postdoctoral Science FoundationProject(51504098)supported by the National Natural Science Foundation of China
文摘Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid dynamics under variouscombinations of inlet diameter and inlet velocity.The results showed that a high sharpness of classification was achieved withspecific inlet diameter and inlet velocity.The separation efficiency of the coarse particles by underflow significantly decreased wheninlet had an oversize diameter owing to a stronger short-circuit flow.It is resulted from the chaotic flow and the stronger pressuregradient around the vortex finder.Meanwhile,a low separation efficiency of the fine particles by overflow was achieved when inletvelocity was high,which indicated a low sharpness caused by the overlarge centrifugal force.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10904104 and 11164026)the High Performance Computing Center of Suzhou University of Science and Technology(SUST)
文摘The effects of hydrostatic pressure of SrWeO3 are investigated by means of generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method within the framework of density functional theory (DFT). Magnetic phase diagrams and structural parameters of SrTcO3 as a function of pressure are predicted. The magnetic ground state of SrTcO3 is found to keep in a G-type antiferromagnetic (G-AFM) structure under the pressure varying from 0 to 100 GPa. With the increase of the pressure, magnetic exchange energy increases, indicating a higher magnetic ordering temperature for SrTcO3 under a larger pressure. Besides the volume of the unit cell, lattice constants, and the bond length, the angles between typical Tc-O-Tc and Sr-O-Sr also decrease with the pressure, leading to strong structural distortions. Very obvious displace- ments of Sr and O atoms are observed under the pressure. Our work provides necessary understanding on electronic structures of SrTcO3 under high pressures.