Non-consistency of stress results is of ten observed during field measurements. In some cases, even the rneasurernents are made at the same location in a massive rockrnass, the results can vary widely. In order to sol...Non-consistency of stress results is of ten observed during field measurements. In some cases, even the rneasurernents are made at the same location in a massive rockrnass, the results can vary widely. In order to solve the problem, extensive research has been carried out to study the major factors wh1ch rnay affect stress deterrnlnation. They include the rock behaviour and the stress state. For rocks showing non-isotropic behaviour, the values of Young’s modulus and Poisson ratio vary with the orientation of loading and measurement. Stress condition in the rock affects the rock behaviour. Furtherrnore, the loading condition on rock samples durlng laboratory tests is different from in the field and therefore the determined e1astic constants may not represent the field condi tion. In general , the Young’s modulus may depend on the orientation, the loading path, the stress magnitude and the stress ratio. This paper examines in detail the effects of those factors, especially for rocks showing transversely isotropic behaviour. It is found that the discrepancy of stress results from field measurernents in this type of rock is mainly due to over simplification of the rock behavior and inadequate use of elastic constants of the rock during stress calculation. A case study is given,which indicates the significance of these factors and demonstrates the proper procedure for stress calculation from measurements.展开更多
Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It...Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.展开更多
A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k-e turbulence model was applied to describe the flow, t...A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k-e turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k-e model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of 〈5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.展开更多
Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three ...Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.展开更多
Traditional thermal methods of drying food have often led to loss of flavours, nutrients, vitamins, etc., which encourages non-thermal pretreatments such as osmotic dehydration (OD) and/or high electric field (HEF...Traditional thermal methods of drying food have often led to loss of flavours, nutrients, vitamins, etc., which encourages non-thermal pretreatments such as osmotic dehydration (OD) and/or high electric field (HEF) application to improve the overall product quality. The aim of this study was to evaluate the effect of osmotic dehydration (50% sucrose) with high electric field strengths of 0.5 and 1.0 kV/cm as pretreatments on the drying kinetics and mass transfer of green apples during convective drying at 65 ~C and microwave drying at 1 W/g. The added value of the OD and HEF on the drying kinetics, and the effective mass transfer coefficients of the subsequent drying methods were investigated through this research. The efficacy of these pre-treatments was assessed and compared using cell disintegration index, product texture and thus bring forth new correlations between these pre-treatments and the cell disintegration index using dielectric spectroscopy and its effect on the product texture.展开更多
The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and be...The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and bench-top centrifuge tests.Results indicated that the slurry had an apparent preconsolidation(due to initial conditions,electrochemical interactions,tortuous drainage,and thixotropic strength) from e = 5.7 to e = 5.5 followed by virgin compression.Likewise,the low hydraulic conductivity(10^(-10)-10^(-12) m/s) was due to low porosity(small pore throats) and high tortuosity(long flow paths).Unlike consolidation of soils,the c_v and m_v decreased with increasing σ' but increased with increasing e and k.The data from the two tests correlated well in the range of σ' = 10-65 kPa,e = 5.5-3.86,k= 1.7 × 10^(-10)-5×10^(-11) m/s,F_c = 1-40 MN.New equations were developed to correlate the consolidation parameters(e,σ',k) with F_c.The deviation of k beyond 40 MN(e = 4.65) was due to deviation from the initial straight line portion of the settlement curve in the centrifuge test.展开更多
The role of viscosity coefficient(η′), coulomb coupling parameter(Γ) and dust mass on the growth of jeans mode is investigated in strongly coupled dusty plasma using equations of Generalized Hydrodynamics(GH) Model...The role of viscosity coefficient(η′), coulomb coupling parameter(Γ) and dust mass on the growth of jeans mode is investigated in strongly coupled dusty plasma using equations of Generalized Hydrodynamics(GH) Model. The novel aspect of this work is that the force arising due to electrostatic pressure caused by grain grain interaction has been included in the dynamics of dust particles. This force is found to play a significant role in counter balancing the self gravity effect, thereby reducing the growth rate of jeans instability. The present work may provide more physical insight in understanding the mechanisms behind formation of planetesimals, stars etc.展开更多
文摘Non-consistency of stress results is of ten observed during field measurements. In some cases, even the rneasurernents are made at the same location in a massive rockrnass, the results can vary widely. In order to solve the problem, extensive research has been carried out to study the major factors wh1ch rnay affect stress deterrnlnation. They include the rock behaviour and the stress state. For rocks showing non-isotropic behaviour, the values of Young’s modulus and Poisson ratio vary with the orientation of loading and measurement. Stress condition in the rock affects the rock behaviour. Furtherrnore, the loading condition on rock samples durlng laboratory tests is different from in the field and therefore the determined e1astic constants may not represent the field condi tion. In general , the Young’s modulus may depend on the orientation, the loading path, the stress magnitude and the stress ratio. This paper examines in detail the effects of those factors, especially for rocks showing transversely isotropic behaviour. It is found that the discrepancy of stress results from field measurernents in this type of rock is mainly due to over simplification of the rock behavior and inadequate use of elastic constants of the rock during stress calculation. A case study is given,which indicates the significance of these factors and demonstrates the proper procedure for stress calculation from measurements.
基金Supported by the State Key Fundamental Research Plan (NO. G2000048) and the National High Performance Computing Foundation of China (No. 99118).
文摘Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.
基金Supported by the Application Research Project of Post-Doctoral Researchers in Qingdao(No.ZQ51201415037)the Modern Agriculture Industry System Construction of Special Funds(No.CARS-50-G10)+1 种基金the Special Project about Independent Innovation and Achievement Transformation of Shandong Province(No.2014ZZCX07102)the Key R&D Program of Jiangsu Province(No.BE2015328)
文摘A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k-e turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k-e model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of 〈5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774083 and 41074040)the Program for New Century Excellent Talents in University (No. NCET-07-0803)the National Key Basic Research Program (No. 2009CB219605)
文摘Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.
文摘Traditional thermal methods of drying food have often led to loss of flavours, nutrients, vitamins, etc., which encourages non-thermal pretreatments such as osmotic dehydration (OD) and/or high electric field (HEF) application to improve the overall product quality. The aim of this study was to evaluate the effect of osmotic dehydration (50% sucrose) with high electric field strengths of 0.5 and 1.0 kV/cm as pretreatments on the drying kinetics and mass transfer of green apples during convective drying at 65 ~C and microwave drying at 1 W/g. The added value of the OD and HEF on the drying kinetics, and the effective mass transfer coefficients of the subsequent drying methods were investigated through this research. The efficacy of these pre-treatments was assessed and compared using cell disintegration index, product texture and thus bring forth new correlations between these pre-treatments and the cell disintegration index using dielectric spectroscopy and its effect on the product texture.
基金the University of Regina for providing laboratory space and the Natural Science and Engineering Research Council of Canada for financial assistance
文摘The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and bench-top centrifuge tests.Results indicated that the slurry had an apparent preconsolidation(due to initial conditions,electrochemical interactions,tortuous drainage,and thixotropic strength) from e = 5.7 to e = 5.5 followed by virgin compression.Likewise,the low hydraulic conductivity(10^(-10)-10^(-12) m/s) was due to low porosity(small pore throats) and high tortuosity(long flow paths).Unlike consolidation of soils,the c_v and m_v decreased with increasing σ' but increased with increasing e and k.The data from the two tests correlated well in the range of σ' = 10-65 kPa,e = 5.5-3.86,k= 1.7 × 10^(-10)-5×10^(-11) m/s,F_c = 1-40 MN.New equations were developed to correlate the consolidation parameters(e,σ',k) with F_c.The deviation of k beyond 40 MN(e = 4.65) was due to deviation from the initial straight line portion of the settlement curve in the centrifuge test.
文摘The role of viscosity coefficient(η′), coulomb coupling parameter(Γ) and dust mass on the growth of jeans mode is investigated in strongly coupled dusty plasma using equations of Generalized Hydrodynamics(GH) Model. The novel aspect of this work is that the force arising due to electrostatic pressure caused by grain grain interaction has been included in the dynamics of dust particles. This force is found to play a significant role in counter balancing the self gravity effect, thereby reducing the growth rate of jeans instability. The present work may provide more physical insight in understanding the mechanisms behind formation of planetesimals, stars etc.