The authors analyzed requirements for a new deepwater platform, from conceptual design to hydrodynamic analysis.The design incorporated Deep Draft Multi-Spar (DDMS) that allowed easy fabrication, reduced costs, and pr...The authors analyzed requirements for a new deepwater platform, from conceptual design to hydrodynamic analysis.The design incorporated Deep Draft Multi-Spar (DDMS) that allowed easy fabrication, reduced costs, and provided favorable motion performance.It also provided a dry tree system and other benefits.The conceptual design process included dimension estimation, general arrangements, weight estimation, weight distribution, stability analysis, etc.A high order boundary element method based on potential theory and the modified Morison equation was used to predict the hydrodynamic and viscous effects of this new concept platform.The response amplitude operators (RAOs) were acquired and compared with those of a typical Truss Spar.The response of the platform to the JONSWAP spectra of 3 different extreme ocean conditions was analyzed to evaluate the seakeeping ability of the new concept.The results revealed favorable motion performance due to all the degrees of freedom available.展开更多
The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover con...The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stem; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.展开更多
The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimate...The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. In this paper, LOFT (loss of fluid test) L9-3 experiment using the SPACE code was selected to confirm the capability of SPACE code and the results calculated by the SPACE code are compared with those measured through the experiment. The results were compared with the experimental data and those of the other code simulations. Throughout the simulation result, it was concluded that the SPACE code can effectively simulate LOFT L9-3 experiment.展开更多
基金Supported by the National High Technology Researchand Development Program of China (863 Program) under Grant No2006AA09A103
文摘The authors analyzed requirements for a new deepwater platform, from conceptual design to hydrodynamic analysis.The design incorporated Deep Draft Multi-Spar (DDMS) that allowed easy fabrication, reduced costs, and provided favorable motion performance.It also provided a dry tree system and other benefits.The conceptual design process included dimension estimation, general arrangements, weight estimation, weight distribution, stability analysis, etc.A high order boundary element method based on potential theory and the modified Morison equation was used to predict the hydrodynamic and viscous effects of this new concept platform.The response amplitude operators (RAOs) were acquired and compared with those of a typical Truss Spar.The response of the platform to the JONSWAP spectra of 3 different extreme ocean conditions was analyzed to evaluate the seakeeping ability of the new concept.The results revealed favorable motion performance due to all the degrees of freedom available.
文摘The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stem; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.
文摘The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. In this paper, LOFT (loss of fluid test) L9-3 experiment using the SPACE code was selected to confirm the capability of SPACE code and the results calculated by the SPACE code are compared with those measured through the experiment. The results were compared with the experimental data and those of the other code simulations. Throughout the simulation result, it was concluded that the SPACE code can effectively simulate LOFT L9-3 experiment.