The monitoring data is undoubtedly important to the water quality monitor- ing department. The proficiency testing is an important way to improve the monitor- ing capacity and enhance the quality management of laborat...The monitoring data is undoubtedly important to the water quality monitor- ing department. The proficiency testing is an important way to improve the monitor- ing capacity and enhance the quality management of laboratories. It plays an impor- tant role in ensuring the accuracy, integrity and comparability of monitoring data. In this paper, the positive role of proficiency testing in the water quality monitoring was analyzed. In addition, how to improve the water quality monitoring capacity and the quality management level of laboratories through the proficiency testing was also discussed.展开更多
Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity ...Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.展开更多
Based on laboratory results of time-dependent mechanical behavior tests,we investigated short-term and mechanical creep behavior of sandstone,observed in conventional triaxial compression experiments at room temperatu...Based on laboratory results of time-dependent mechanical behavior tests,we investigated short-term and mechanical creep behavior of sandstone,observed in conventional triaxial compression experiments at room temperature,using a servo-controlled rheology testing machine.Given our short-term experimental test results,we confirmed deviatoric creep stress levels of sandstone.Multiple deviatoric stress levels were applied in steps to each sample.Each deviatoric stress level before the final failed deviatoric stress was maintained for 48 h or longer.Time-dependent variations of axial strains of sandstone samples are discussed and evaluated.During the creep tests,complete tertiary creep curves of sandstone were observed under failed deviatoric stress levels with different confining pressures.Slices of coal in sandstone samples can lead to distinct tertiary creep deformation failure.展开更多
It’s very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions...It’s very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions. For calculating the wave and current loads on upright small-long-size pipe, the Morrison equation is practical and applied. Jacket platform is a kind of offshore space frame structure comprised of lots of poles that are circular cylinders with small diameter and in the oblique status relative to seabed. In this paper, based on Morrison equation, the specific method and procedure calculating the wave and current loads on launching jacket are given and applied on a typical launching jacket. The instance shows that the method and procedure are convenient and make the calculation and analysis in good agreement with actual launching.展开更多
Long-term kinematic research of slow- moving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide l...Long-term kinematic research of slow- moving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide located on the Jinsha river bank in southwest China. This debris slide is known to have a volume of 27×106 ms in active state for at least one century. Field survey and geotechnical investigation were carried out to define the structure of the landslide. The physical and mechanical properties of the landslide materials were obtained by in-situ and laboratory tests. Additionally, surface and subsurface displacements, as well as groundwater level fluctuations, were monitored since 2005. Movement features, especially the response of the landslide movement to rainfall, were analysed. Relationships between resisting forces and driving forces were analysed by using the limit equilibrium method assuming rigid-plastic frictional slip. The results confirmed a viscous comoonent in the long-term continuous movement resulting in the quasioverconsolidated state of the slip zone with higher strength parameters than some other types of slowmoving landslides. Both surface and subsurface displacements showed an advancing pattern by the straight outwardly inclined (rather than gently or reversely inclined) slip zone, which resulted in low resistance to the entire sliding mass. The average surface displacement rate from 2005 to 2016 was estimated to be 0.19-0.87 mm/d. Basal sliding on the silty clay seam accounted for most of the deformation with different degrees of internal deformation in different parts. Rainfall was the predominant factor affecting the kinematics of Jinpingzi landslide while the role of groundwater level, though positive, was not significant. The response of the groundwater level to rainfall infiltration was not apparent. Unlike some shallow slow-moving earth flows or mudslides, whose behaviors are directly related to the phreatic groundwater level, the mechanism for Jinpingzi landslide kinematics is more likely related to the changing weight of the sliding mass and the downslope seepage pressure in the shallow soil mass resulting from rainfall events.展开更多
In absorption cycles,ionic liquid(IL)1,3-dimethylimidazolium tetrafluoroborate([Dmim]BF4)may be a promising absorbent of working pair using water as refrigerant.The vapor pressures of[Dmim]BF4 aqueous solution were me...In absorption cycles,ionic liquid(IL)1,3-dimethylimidazolium tetrafluoroborate([Dmim]BF4)may be a promising absorbent of working pair using water as refrigerant.The vapor pressures of[Dmim]BF4 aqueous solution were measured with the boiling-point method in the temperature range from 312.25 to 403.60 K and in the mass concentration range of 65%to 90%of[Dmim]BF4.The experimental data were correlated with an Antoine-type equation and the Non-Random Two-Liquid(NRTL)model,and the average absolute deviations between the experimental and calculated values were 1.06%and 1.15%,respectively.For the[Dmim]BF4 aqueous solution,the experimental vapor pressures show negative deviations from the calculated data with Raoult's law.For higher mass concentration of the IL,the deviation is more negative.In addition,the vapor pressures,the hydrophilicity and the solubility of[Dmim]BF4 aqueous solutions were compared with those of[Dmim]Cl aqueous solutions and [Bmim]BF4 aqueous solutions at IL-mole fraction of 0.20.展开更多
The research object was high 120 m concrete gravity dam of the Angara Bratsk hydroelectric power plant. The state of the concrete dam is estimated based on the results of continuous supervision performed by site perso...The research object was high 120 m concrete gravity dam of the Angara Bratsk hydroelectric power plant. The state of the concrete dam is estimated based on the results of continuous supervision performed by site personnel as well as periodic monitoring. According to the classification of the interrelations in the system "concrete-environment", there were selected some important parts of dams and a comprehensive analysis of concrete was executed on these parts. Concerning the complex research of concrete, a combination of full-scale tests with core-sampling has been proposed. Core samples tests had an object to study the deep concrete layers and to determine the specific indicators such as strength, density, porosity, comparative diameter of capillary pores, CaO content in cement stone and others. Obtained findings and recommended criteria can be applied when selecting technologies for constructing dams that guarantee their durability in the north.展开更多
基金Supported by Special Scientific Research Fund of Public Welfare Profession of Ministry of Water Resources(201101007)~~
文摘The monitoring data is undoubtedly important to the water quality monitor- ing department. The proficiency testing is an important way to improve the monitor- ing capacity and enhance the quality management of laboratories. It plays an impor- tant role in ensuring the accuracy, integrity and comparability of monitoring data. In this paper, the positive role of proficiency testing in the water quality monitoring was analyzed. In addition, how to improve the water quality monitoring capacity and the quality management level of laboratories through the proficiency testing was also discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 40771026)the NSFC-RFBR project (Grant No. 40911120089, 08-05-92206 NSFCa)
文摘Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.
基金Projects 50709008 and 50539110 are supported by the National Natural Science Foundation of China.
文摘Based on laboratory results of time-dependent mechanical behavior tests,we investigated short-term and mechanical creep behavior of sandstone,observed in conventional triaxial compression experiments at room temperature,using a servo-controlled rheology testing machine.Given our short-term experimental test results,we confirmed deviatoric creep stress levels of sandstone.Multiple deviatoric stress levels were applied in steps to each sample.Each deviatoric stress level before the final failed deviatoric stress was maintained for 48 h or longer.Time-dependent variations of axial strains of sandstone samples are discussed and evaluated.During the creep tests,complete tertiary creep curves of sandstone were observed under failed deviatoric stress levels with different confining pressures.Slices of coal in sandstone samples can lead to distinct tertiary creep deformation failure.
基金Supported by Item of Doctor Subject of Colleges and University (No.2000014125) and the Education Office of Liaoning Province (No.05l091).
文摘It’s very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions. For calculating the wave and current loads on upright small-long-size pipe, the Morrison equation is practical and applied. Jacket platform is a kind of offshore space frame structure comprised of lots of poles that are circular cylinders with small diameter and in the oblique status relative to seabed. In this paper, based on Morrison equation, the specific method and procedure calculating the wave and current loads on launching jacket are given and applied on a typical launching jacket. The instance shows that the method and procedure are convenient and make the calculation and analysis in good agreement with actual launching.
文摘Long-term kinematic research of slow- moving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide located on the Jinsha river bank in southwest China. This debris slide is known to have a volume of 27×106 ms in active state for at least one century. Field survey and geotechnical investigation were carried out to define the structure of the landslide. The physical and mechanical properties of the landslide materials were obtained by in-situ and laboratory tests. Additionally, surface and subsurface displacements, as well as groundwater level fluctuations, were monitored since 2005. Movement features, especially the response of the landslide movement to rainfall, were analysed. Relationships between resisting forces and driving forces were analysed by using the limit equilibrium method assuming rigid-plastic frictional slip. The results confirmed a viscous comoonent in the long-term continuous movement resulting in the quasioverconsolidated state of the slip zone with higher strength parameters than some other types of slowmoving landslides. Both surface and subsurface displacements showed an advancing pattern by the straight outwardly inclined (rather than gently or reversely inclined) slip zone, which resulted in low resistance to the entire sliding mass. The average surface displacement rate from 2005 to 2016 was estimated to be 0.19-0.87 mm/d. Basal sliding on the silty clay seam accounted for most of the deformation with different degrees of internal deformation in different parts. Rainfall was the predominant factor affecting the kinematics of Jinpingzi landslide while the role of groundwater level, though positive, was not significant. The response of the groundwater level to rainfall infiltration was not apparent. Unlike some shallow slow-moving earth flows or mudslides, whose behaviors are directly related to the phreatic groundwater level, the mechanism for Jinpingzi landslide kinematics is more likely related to the changing weight of the sliding mass and the downslope seepage pressure in the shallow soil mass resulting from rainfall events.
基金Supported by the National Natural Science Foundation of China(50890184)the National Basic Research Program of China(2010CB227304)
文摘In absorption cycles,ionic liquid(IL)1,3-dimethylimidazolium tetrafluoroborate([Dmim]BF4)may be a promising absorbent of working pair using water as refrigerant.The vapor pressures of[Dmim]BF4 aqueous solution were measured with the boiling-point method in the temperature range from 312.25 to 403.60 K and in the mass concentration range of 65%to 90%of[Dmim]BF4.The experimental data were correlated with an Antoine-type equation and the Non-Random Two-Liquid(NRTL)model,and the average absolute deviations between the experimental and calculated values were 1.06%and 1.15%,respectively.For the[Dmim]BF4 aqueous solution,the experimental vapor pressures show negative deviations from the calculated data with Raoult's law.For higher mass concentration of the IL,the deviation is more negative.In addition,the vapor pressures,the hydrophilicity and the solubility of[Dmim]BF4 aqueous solutions were compared with those of[Dmim]Cl aqueous solutions and [Bmim]BF4 aqueous solutions at IL-mole fraction of 0.20.
文摘The research object was high 120 m concrete gravity dam of the Angara Bratsk hydroelectric power plant. The state of the concrete dam is estimated based on the results of continuous supervision performed by site personnel as well as periodic monitoring. According to the classification of the interrelations in the system "concrete-environment", there were selected some important parts of dams and a comprehensive analysis of concrete was executed on these parts. Concerning the complex research of concrete, a combination of full-scale tests with core-sampling has been proposed. Core samples tests had an object to study the deep concrete layers and to determine the specific indicators such as strength, density, porosity, comparative diameter of capillary pores, CaO content in cement stone and others. Obtained findings and recommended criteria can be applied when selecting technologies for constructing dams that guarantee their durability in the north.