[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic c...[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.展开更多
Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer's disease (AD) and aging. The present study examines the protective effects of aniracetam a...Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer's disease (AD) and aging. The present study examines the protective effects of aniracetam against H2O2- induced toxicity to neuron viability, mitochondria potential and hippocampal long-term potentiation (LTP). Methods Tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was used to detect neuronal viability. MitoTracker Red (CMX Ros), a fluorescent stain for mitochondria, was used to measure mitochondria potential. Electrophysiological technique was carried out to record hippocampual LTE Results H2O2 exposure impaired the viability of neurons, reduced mitochondria potential, and decreased LTP in the CA region of hippocampus. These deficient effects were significantly rescued by pre-treatment with aniracetam (10 ~100μmol/L). Conclusion These results indicate that aniracetam has a strong neuroprotective effect against H2O2-induced toxicity, which could partly explain the mechanism of its clinical application in neurodegenerative diseases.展开更多
A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at...A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefbre, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.展开更多
The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear...The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.展开更多
The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concen...The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concentrations were analyzed after solving the equation numerically using the perturbation method and finite difference. The inclusion of the nonparallel terms produces a reduction in the values of the critical Reynolds number compared with the parallel flow. There is a critical value for the effect of Stokes number, and the critical Stokes number being about unit, and the most efficient instability suppression takes place when Stokes number is of order 10. But the presence of the nonparallel terms does not affect the role of the particles in gas. That is, the addition of fine particles (Stokes number is much smaller than 1) reduces the critical Reynolds number while the addition of coarse particles (Stokes number is much larger than 1) enhances it. Qualitatively the effect of nonparallel mean flow is the same as that for the case of plane parallel flows.展开更多
Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes...Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.展开更多
[ Objective] The aim was to study the optimum extraction condition of dietary fiber of wheat bran and to discuss its influence on viscosity-elasticity of noodle dough with added extracts. [ Methed] Influences of a-amy...[ Objective] The aim was to study the optimum extraction condition of dietary fiber of wheat bran and to discuss its influence on viscosity-elasticity of noodle dough with added extracts. [ Methed] Influences of a-amylase, alkaline concentration, alkaline hydrolysis time and temperature on water holding capability and swelling capacity of dietary fiber were evaluated using single-factor test and orthogonal test. Effects of added dietary fiber from wheat bran on dough absorption ratio, rupture stress of dough and creep resistance were studied. [ Result] When the hydrolysis condi-tions of wheat bran were 0.4% a-amylase at 75 ℃ for 60 rain, further alkaline conditions were 5% sodium hydroxide for 60 min at 65 ℃, dietary fi-ber exhibited fine water holding capability and swelling capacity. The addition of 3%-5% dietary fiber from wheat bran into dough had little influence on the water absorption ratio of noodle, rupture stress of dough, creep resistance and can make functional noodle with rich dietary fiber from wheat bran. [Coonclusion] The study provided reference for the comprehensive utilization of wheat bran and development of functional product.展开更多
Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subj...Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subjected to seepage. The radial stress distribution curve, ground reaction curve, and relation curve between plastic softening region radius and supporting force in three different conditions were drawn respectively. From the comparisons among these results for different conditions, it is found that when the supporting force is the same, the displacement of tunnel wall considering both seepage and strain softening is 85.71% greater than that only considering seepage. The increase values of radial displacement at 0.95 m and plastic softening region radius at 6.6 m show that the seepage and strain softening have the most unfavorable effects on circular opening stability in strain softening rock masses.展开更多
A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one...A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.展开更多
Prandtl’s lifting line theory was generalized to the lifting problem of a three-dimensional hydrofoil in the presence of a free surface. Similar to the classical lifting theory, the singularity distribution method wa...Prandtl’s lifting line theory was generalized to the lifting problem of a three-dimensional hydrofoil in the presence of a free surface. Similar to the classical lifting theory, the singularity distribution method was utilized to solve two-dimensional lifting problems for the hydrofoil beneath the free surface at the air-water interface, and a lifting line theory was developed to correct three-dimensional effects of the hydrofoil with a large aspect ratio. Differing from the classical lifting theory, the main focus was on finding the three-dimensional Green function of the free surface induced by the steady motion of a system of horseshoe vortices under the free surface. Finally, numerical examples were given to show the relationship between the lift coefficient and submergence Froude numbers for 2-D and 3-D hydrofoils. If the submergence Froude number is small free surface effect will be significant registered as the increase of lift coefficient. The validity of these approaches was examined in comparison with the results calculated by other methods.展开更多
As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transportin...As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.展开更多
Based on continuum mechanics and rock dynamics,analyzed the micro-struc- ture damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model.Further,on the assumption of that roc...Based on continuum mechanics and rock dynamics,analyzed the micro-struc- ture damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model.Further,on the assumption of that rock was homogeneous and iso- tropic,a computational model was established based on nonlinear finite element and Arbi- trary Lagrangian-Eulerian(ALE) method.The dynamic effect impacted on rock under high pressure water jet was simulated by the dynamic contact method.The propagation of stress wave in rock was numerically simulated at different impacting velocity.The results show that the propagation velocity of stress wave is proportional to the impacting velocity of high pressure water jet.The faster the impacting velocity is,the quicker the comedown of stress wave.展开更多
The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were exe...The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were executed. The technique "split Hopkinson pressure bar"(SHPB) was used. The impact velocity was 10 m/s with corresponding strain rate of 50 s-1. The compressive behavior of materials was measured in terms of stress-strain curves, dynamic compressive strength, dynamic increase factor(DIF) and critical strain at a maximum stress. The data obtained from test indicate that both ascending and descending portions of stress-stain curves are affected by moisture content. However, the effect is noted to be more significant in ascending portion of the stress-strain curves. Dynamic compressive strength is higher at lower moisture content and weaker at higher moisture content.Furthermore, under nearly saturated condition, an increase in compressive strength can be found. The effect of moisture content on the average DIF of concrete is not significant. The critical compressive strain of concrete does not change with moisture content.展开更多
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(13)3031)~~
文摘[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.
文摘Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer's disease (AD) and aging. The present study examines the protective effects of aniracetam against H2O2- induced toxicity to neuron viability, mitochondria potential and hippocampal long-term potentiation (LTP). Methods Tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was used to detect neuronal viability. MitoTracker Red (CMX Ros), a fluorescent stain for mitochondria, was used to measure mitochondria potential. Electrophysiological technique was carried out to record hippocampual LTE Results H2O2 exposure impaired the viability of neurons, reduced mitochondria potential, and decreased LTP in the CA region of hippocampus. These deficient effects were significantly rescued by pre-treatment with aniracetam (10 ~100μmol/L). Conclusion These results indicate that aniracetam has a strong neuroprotective effect against H2O2-induced toxicity, which could partly explain the mechanism of its clinical application in neurodegenerative diseases.
基金the Marine Research Center of Amirkabir University of Technology for financial support of thi sresearch
文摘A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefbre, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.
文摘The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.
基金Project supported by the National Natural Science Foundation ofChina (No. 10372090) and the Doctoral Program of Higher Educationof China (No. 20030335001)
文摘The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concentrations were analyzed after solving the equation numerically using the perturbation method and finite difference. The inclusion of the nonparallel terms produces a reduction in the values of the critical Reynolds number compared with the parallel flow. There is a critical value for the effect of Stokes number, and the critical Stokes number being about unit, and the most efficient instability suppression takes place when Stokes number is of order 10. But the presence of the nonparallel terms does not affect the role of the particles in gas. That is, the addition of fine particles (Stokes number is much smaller than 1) reduces the critical Reynolds number while the addition of coarse particles (Stokes number is much larger than 1) enhances it. Qualitatively the effect of nonparallel mean flow is the same as that for the case of plane parallel flows.
基金Supported by the National Natural Science Foundation of China under Grant No.(51079034).
文摘Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.
基金Supported by National Science and Technology Fund(31171753)International Science and Technology Cooperation Program of Anhui Province(10080703035)Natural Scientific Research Fund of Universities in Anhui Province(KJ2009A109)
文摘[ Objective] The aim was to study the optimum extraction condition of dietary fiber of wheat bran and to discuss its influence on viscosity-elasticity of noodle dough with added extracts. [ Methed] Influences of a-amylase, alkaline concentration, alkaline hydrolysis time and temperature on water holding capability and swelling capacity of dietary fiber were evaluated using single-factor test and orthogonal test. Effects of added dietary fiber from wheat bran on dough absorption ratio, rupture stress of dough and creep resistance were studied. [ Result] When the hydrolysis condi-tions of wheat bran were 0.4% a-amylase at 75 ℃ for 60 rain, further alkaline conditions were 5% sodium hydroxide for 60 min at 65 ℃, dietary fi-ber exhibited fine water holding capability and swelling capacity. The addition of 3%-5% dietary fiber from wheat bran into dough had little influence on the water absorption ratio of noodle, rupture stress of dough, creep resistance and can make functional noodle with rich dietary fiber from wheat bran. [Coonclusion] The study provided reference for the comprehensive utilization of wheat bran and development of functional product.
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation of ChinaProject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subjected to seepage. The radial stress distribution curve, ground reaction curve, and relation curve between plastic softening region radius and supporting force in three different conditions were drawn respectively. From the comparisons among these results for different conditions, it is found that when the supporting force is the same, the displacement of tunnel wall considering both seepage and strain softening is 85.71% greater than that only considering seepage. The increase values of radial displacement at 0.95 m and plastic softening region radius at 6.6 m show that the seepage and strain softening have the most unfavorable effects on circular opening stability in strain softening rock masses.
基金partially supported by the University of Salerno (Italy) through the Civil and Environmental Engineering Ph.D. programme and FARB research funding
文摘A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.
基金Supported by the National Natural Science Foundation of China under Grant No.50921001973 Program under Grant No. 2010CB83270
文摘Prandtl’s lifting line theory was generalized to the lifting problem of a three-dimensional hydrofoil in the presence of a free surface. Similar to the classical lifting theory, the singularity distribution method was utilized to solve two-dimensional lifting problems for the hydrofoil beneath the free surface at the air-water interface, and a lifting line theory was developed to correct three-dimensional effects of the hydrofoil with a large aspect ratio. Differing from the classical lifting theory, the main focus was on finding the three-dimensional Green function of the free surface induced by the steady motion of a system of horseshoe vortices under the free surface. Finally, numerical examples were given to show the relationship between the lift coefficient and submergence Froude numbers for 2-D and 3-D hydrofoils. If the submergence Froude number is small free surface effect will be significant registered as the increase of lift coefficient. The validity of these approaches was examined in comparison with the results calculated by other methods.
基金Project(50975290) supported by the National Natural Science Foundation of ChinaProject(2011QNZT057) supported by the Basic Operational Cost of Special Research Funding of Central Universities in ChinaProject(11JJ5028) supported by Hunan Provincial Natural Science Foundation,China
文摘As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.
基金the National Natural Science Foundation of China(5062140)
文摘Based on continuum mechanics and rock dynamics,analyzed the micro-struc- ture damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model.Further,on the assumption of that rock was homogeneous and iso- tropic,a computational model was established based on nonlinear finite element and Arbi- trary Lagrangian-Eulerian(ALE) method.The dynamic effect impacted on rock under high pressure water jet was simulated by the dynamic contact method.The propagation of stress wave in rock was numerically simulated at different impacting velocity.The results show that the propagation velocity of stress wave is proportional to the impacting velocity of high pressure water jet.The faster the impacting velocity is,the quicker the comedown of stress wave.
基金Project(50979032)supported by the National Natural Science Foundation of China
文摘The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were executed. The technique "split Hopkinson pressure bar"(SHPB) was used. The impact velocity was 10 m/s with corresponding strain rate of 50 s-1. The compressive behavior of materials was measured in terms of stress-strain curves, dynamic compressive strength, dynamic increase factor(DIF) and critical strain at a maximum stress. The data obtained from test indicate that both ascending and descending portions of stress-stain curves are affected by moisture content. However, the effect is noted to be more significant in ascending portion of the stress-strain curves. Dynamic compressive strength is higher at lower moisture content and weaker at higher moisture content.Furthermore, under nearly saturated condition, an increase in compressive strength can be found. The effect of moisture content on the average DIF of concrete is not significant. The critical compressive strain of concrete does not change with moisture content.