Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes...Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.展开更多
The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in...The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in an unsaturated quartz rock mass, two computation conditions were designed: 1) the porosity and the permeability of rock mass are fimctions of pressure solution; 2) the porosity and the permeability are constants. Then the corresponding numerical simulations for a disposal period of 4 a were carried out, and the states of temperatures, porosities and permeabilities, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show that at the end of the calculation in Case 1, pressure solution makes the porosities and the permeabilities decrease to 10%-45% and 0.05%-1.4% of their initial values, respectively. Under the action of the release heat of nuclear waste, the negative pore pressures both in Case 1 and Case 2 are 1.2-1.4 and 1.01-l.06 times of the initial values, respectively. So, the former represents an obvious effect of pressure solution. The magnitudes and distributions of stresses within the rock mass in the two calculation cases are the same.展开更多
The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity fields and cavity dynamics around a pitching hydrofoil. T...The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity fields and cavity dynamics around a pitching hydrofoil. The effects of pitching rate on the sub- cavitating and cavitating response of the pitching hydrofoil are also investigated. In particular, we focus on the interactions between cavity inception, growth, and shedding and the vortex flow structures, and their impacts on the hydrofoil performance. The calculations are 2-D and performed by solving the incompressible, multiphase Unsteady Reynolds Averaged Navier Stokes (URANS) equations via the commercial CFD code CFX. The k-co SST (Shear Stress Transport) turbulence model is used along with the transport equation-based cavitation models. The density correction function is considered to reduce the eddy viscosity according to the computed local fluid mixture density. The calculation results are validated with experiments conducted by Ducoin et al. (see Computational and experimental investigation of flow over a transient pitching hydrofoil, Eur J Mech/B Fluids, 2009, 28:728-743 and An experimental analysis of fluid structure interaction of a flexible hydrofoil in vari- ous flow regimes including cavitating flow, Eur J Mech B/fluids, 2012, 36: 63-74). Results are shown for a NACA66 hydro- foil subject to slow (quasi static, t2=6~/s, &* =0.18) and fast (dynamic, &=63~/s, dr" =1.89) pitching motions from a =0~ to a =15~. Both subcavitaing (or =8.0) and cavitating (cr=3.0) flows are considered. For subcavitating flow (or=8.0), low frequency fluctuations have been observed when the leading edge vortex shedding occurs during stall, and delay of stall is ob- served with increasing pitching velocity. For cavitating flow (tr=3.0), small leading edge cavities are observed with the slow pitching case, which significantly modified the vortex dynamics at high angles of attack, leading to high frequency fluctuations of the hydrodynamic coefficients and different stall behaviors compared to the subcavitating flow at the same pitching rate. On the other hand, for the fast pitching case at or=3.0, large-scale sheet/cloud cavitation is observed, the cavity behavior is un- steady and has a strong impact on the hydrodynamic response, which leads to high amplitude fluctuations of the hydrodynamic coefficients, as well as significant changes in the stall and post-stall behavior. The numerical results also show that the local density modification helps to reduce turbulent eddy viscosity in the cavitating region, which significantly modifies the cavity lengths and shedding frequencies, particularly for the fast pitching case. In general, compared with the experimental visualiza- tions, the numerical results with local density correction have been found to agree well with experimental measurements and observations for both slow and fast transient pitching cases.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.(51079034).
文摘Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.
基金Project(2010CB732101) supported by the National Basic Research Program of ChinaProject(51079145) supported by the National Natural Science Foundation of ChinaProject(2009BAK53B03) supported by the National Key Technology R&D Program of China
文摘The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in an unsaturated quartz rock mass, two computation conditions were designed: 1) the porosity and the permeability of rock mass are fimctions of pressure solution; 2) the porosity and the permeability are constants. Then the corresponding numerical simulations for a disposal period of 4 a were carried out, and the states of temperatures, porosities and permeabilities, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show that at the end of the calculation in Case 1, pressure solution makes the porosities and the permeabilities decrease to 10%-45% and 0.05%-1.4% of their initial values, respectively. Under the action of the release heat of nuclear waste, the negative pore pressures both in Case 1 and Case 2 are 1.2-1.4 and 1.01-l.06 times of the initial values, respectively. So, the former represents an obvious effect of pressure solution. The magnitudes and distributions of stresses within the rock mass in the two calculation cases are the same.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172040 and 51306020)
文摘The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity fields and cavity dynamics around a pitching hydrofoil. The effects of pitching rate on the sub- cavitating and cavitating response of the pitching hydrofoil are also investigated. In particular, we focus on the interactions between cavity inception, growth, and shedding and the vortex flow structures, and their impacts on the hydrofoil performance. The calculations are 2-D and performed by solving the incompressible, multiphase Unsteady Reynolds Averaged Navier Stokes (URANS) equations via the commercial CFD code CFX. The k-co SST (Shear Stress Transport) turbulence model is used along with the transport equation-based cavitation models. The density correction function is considered to reduce the eddy viscosity according to the computed local fluid mixture density. The calculation results are validated with experiments conducted by Ducoin et al. (see Computational and experimental investigation of flow over a transient pitching hydrofoil, Eur J Mech/B Fluids, 2009, 28:728-743 and An experimental analysis of fluid structure interaction of a flexible hydrofoil in vari- ous flow regimes including cavitating flow, Eur J Mech B/fluids, 2012, 36: 63-74). Results are shown for a NACA66 hydro- foil subject to slow (quasi static, t2=6~/s, &* =0.18) and fast (dynamic, &=63~/s, dr" =1.89) pitching motions from a =0~ to a =15~. Both subcavitaing (or =8.0) and cavitating (cr=3.0) flows are considered. For subcavitating flow (or=8.0), low frequency fluctuations have been observed when the leading edge vortex shedding occurs during stall, and delay of stall is ob- served with increasing pitching velocity. For cavitating flow (tr=3.0), small leading edge cavities are observed with the slow pitching case, which significantly modified the vortex dynamics at high angles of attack, leading to high frequency fluctuations of the hydrodynamic coefficients and different stall behaviors compared to the subcavitating flow at the same pitching rate. On the other hand, for the fast pitching case at or=3.0, large-scale sheet/cloud cavitation is observed, the cavity behavior is un- steady and has a strong impact on the hydrodynamic response, which leads to high amplitude fluctuations of the hydrodynamic coefficients, as well as significant changes in the stall and post-stall behavior. The numerical results also show that the local density modification helps to reduce turbulent eddy viscosity in the cavitating region, which significantly modifies the cavity lengths and shedding frequencies, particularly for the fast pitching case. In general, compared with the experimental visualiza- tions, the numerical results with local density correction have been found to agree well with experimental measurements and observations for both slow and fast transient pitching cases.