It’s very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions...It’s very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions. For calculating the wave and current loads on upright small-long-size pipe, the Morrison equation is practical and applied. Jacket platform is a kind of offshore space frame structure comprised of lots of poles that are circular cylinders with small diameter and in the oblique status relative to seabed. In this paper, based on Morrison equation, the specific method and procedure calculating the wave and current loads on launching jacket are given and applied on a typical launching jacket. The instance shows that the method and procedure are convenient and make the calculation and analysis in good agreement with actual launching.展开更多
The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are...The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.展开更多
An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-p...An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.展开更多
Using eight years of time-variant gravity measurements from the GRACE gravity satellite mission, we estimate monthly terrestrial water storage variations in the North China Plain between August 2002 and August 2010. W...Using eight years of time-variant gravity measurements from the GRACE gravity satellite mission, we estimate monthly terrestrial water storage variations in the North China Plain between August 2002 and August 2010. We find that during this period, the water storage is not constant but accelerate at a rate of -1.1 cm/yr over time. The study confirms that the relatively long-term trend of water storage in the North China Plain (by 13-point moving average) is consistent well with that by linear fitting. Two hydrological models, CPC and GLDAS, are adopted in calculating surface water variations, with results indicating that they agree with those of GRACE. Furthermore, rates of -0.6 cm/yr for surface water variations and -0.5 cm/yr for groundwater variations are found in the North China Plain during the study period. Decrease of rainfall and the groundwater over-exploitation are possibly the main causes for groundwater depletion in the North China Plain. The results will be helpful for better understanding climatic changes and provide reference for the management of water resources and the establishment of policies on preventing and alleviating natural hazards.展开更多
基金Supported by Item of Doctor Subject of Colleges and University (No.2000014125) and the Education Office of Liaoning Province (No.05l091).
文摘It’s very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions. For calculating the wave and current loads on upright small-long-size pipe, the Morrison equation is practical and applied. Jacket platform is a kind of offshore space frame structure comprised of lots of poles that are circular cylinders with small diameter and in the oblique status relative to seabed. In this paper, based on Morrison equation, the specific method and procedure calculating the wave and current loads on launching jacket are given and applied on a typical launching jacket. The instance shows that the method and procedure are convenient and make the calculation and analysis in good agreement with actual launching.
基金Project supported by the National Basic Research Program (973) of China (No.2006CB705400)the National Natural Science Foundation of China (No.50575200)
文摘The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.
基金Project(8151027501000008) supported by Guangdong Natural Science Foundation, ChinaProject(2007490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, ChinaProject (2006K0006) supported by the Open Foundation of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China
文摘An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.
基金supported by National High Technology Program of China (Grant No. 2010AA12206)National Natural Science Foundation of China (Grant No. 10973031)
文摘Using eight years of time-variant gravity measurements from the GRACE gravity satellite mission, we estimate monthly terrestrial water storage variations in the North China Plain between August 2002 and August 2010. We find that during this period, the water storage is not constant but accelerate at a rate of -1.1 cm/yr over time. The study confirms that the relatively long-term trend of water storage in the North China Plain (by 13-point moving average) is consistent well with that by linear fitting. Two hydrological models, CPC and GLDAS, are adopted in calculating surface water variations, with results indicating that they agree with those of GRACE. Furthermore, rates of -0.6 cm/yr for surface water variations and -0.5 cm/yr for groundwater variations are found in the North China Plain during the study period. Decrease of rainfall and the groundwater over-exploitation are possibly the main causes for groundwater depletion in the North China Plain. The results will be helpful for better understanding climatic changes and provide reference for the management of water resources and the establishment of policies on preventing and alleviating natural hazards.