期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
地震和波浪作用下表面波条件对海水动水压力的影响
1
作者 郭康康 赵密 +2 位作者 杜修力 许成顺 王亚东 《震灾防御技术》 CSCD 北大核心 2017年第1期166-176,共11页
地震动斜入射条件下海洋场地简化为理想流体海水-两相介质海床-弹性固体基岩系统模型,通常假定为静水液面条件。本文以地震动SV波为例,推导了表面波条件下海洋场地动力反应解析解,研究了表面波条件对海水动水压力的影响。研究表明,表面... 地震动斜入射条件下海洋场地简化为理想流体海水-两相介质海床-弹性固体基岩系统模型,通常假定为静水液面条件。本文以地震动SV波为例,推导了表面波条件下海洋场地动力反应解析解,研究了表面波条件对海水动水压力的影响。研究表明,表面波频率在大于0.5Hz时对海水动水压力几乎无影响,在小于0.5Hz范围内有影响,且越接近水面、频率越低时影响越显著。实际地震动卓越频率通常大于0.5Hz,因而地震动作用下采用忽略表面波条件的静水液面假定是合理的。进一步结合线性波浪理论,研究SV波和波浪联合作用下表面波条件对海水动水压力的影响。研究表明,由于波浪属于低频荷载且频率通常小于0.5Hz,在地震和波浪联合作用下表面波条件的影响较地震单独作用更为显著。 展开更多
关键词 表面波条件地 震波 浪海 水动水压力
下载PDF
Numerical simulation of dynamic pore pressure in asphalt pavement 被引量:7
2
作者 崔新壮 金青 +1 位作者 商庆森 翟继光 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期79-82,共4页
For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis... For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis of the pavement is conducted considering asphalt mixtures as porous media. Results reveal that the development and dissipation of the dynamic pore pressure are coinstantaneous and this makes both the positive and negative dynamic pore pressure and seepage force alternate with time. Repetitive hydrodynamic pumping and sucking during moisture damage is proved. The dynamic pore pressure increases with vehicle velocity. Effective stress and deflection of pavement decrease due to the dynamic pore water pressure. However, the emulsification and replacement of the asphalt membrane by water are accelerated. The maximum dynamic pore pressure occurs at the bottom of the surface course. So it is suggested that a drain course should be set up to change the draining condition from single-sided drain to a two-sided drain, and thus moisture damage can be effectively limited. 展开更多
关键词 road engineering asphalt pavement moisture damage dynamic pore pressure seepage force dynamic deflection
下载PDF
Crack propagation mechanism of compression-shear rock under static-dynamic loading and seepage water pressure 被引量:10
3
作者 周志华 曹平 叶洲元 《Journal of Central South University》 SCIE EI CAS 2014年第4期1565-1570,共6页
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor... To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing. 展开更多
关键词 static-dynamic loading seepage pressure stress intensity factor initiation of crack
下载PDF
Effect of fissure water on mechanical characteristics of rock mass
4
作者 ZHANG Haibo ZHANG Wei +1 位作者 LV Lei FENG Yan 《Mining Science and Technology》 EI CAS 2010年第6期846-849,共4页
In view of the effect of fissure water in fractured rock mass on the strength of rock mass in engineering projects, we pre-pared specimens of cement mortar to simulate saturated rock mass with continuous fractures of ... In view of the effect of fissure water in fractured rock mass on the strength of rock mass in engineering projects, we pre-pared specimens of cement mortar to simulate saturated rock mass with continuous fractures of different slope angles. By exerting static and dynamic loads on the specimens, the mechanical characteristics of rock mass with fissure water under these loads can be analyzed. Our experimental results indicate that the static compressive strength of saturated fractured rock mass is related to the slope angle. The lowest compressive strength of fractured rock mass occurs when the slope angle is 45°, while the highest strength occurs when the specimen has no fractures. Fissure water can weaken the strength of rock mass. The softening coefficient does not vary with the slope angle and type of load. The hydrodynamic pressure of fractured rock mass gradually increases with an increase in dynamic load. For a 0° slope angle, the hydrodynamic pressure reaches its highest level. When the slope angle is 90°, the hydro-dynamic pressure is the lowest. 展开更多
关键词 fractured rock mass SIMULATION fissure water SHPB hydrodynamic pressure
下载PDF
Development of Vibrating Monitoring for Hydro Power Turbines under Operating Condition
5
作者 Skvorcov Oleg 《Journal of Mechanics Engineering and Automation》 2014年第11期878-886,共9页
Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power ... Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power plant. Existing techniques of control of a vibrating condition do not consider: very wide frequency range of vibrating processes, difficult character of such processes in the form of the sum multiharmonic, random and close to shock processes. Such techniques usually do not consider intervals of start-up and stop, and also work on transitive modes when loadings on a construction are maximum. Available techniques of an estimation of admissible level of vibrating influence and tests for vibration durability are not harmonized enough among themselves. Various known interpretations of communication of vibrating characteristics and durability estimations on mechanical pressure at broadband vibrating influence yield ambiguous result. On the basis of the analysis of the published information, we attempt to formulate the requirement to system of vibrating monitoring of the hydraulic turbine and power motor pumps. System should provide data acquisition and the analysis of the data on a vibrating condition taking into account accumulation of vibrating influences and long term of operation on the basis of estimation methods as low-cycle, and high-cycle (gigacycle) fatigue is made. 展开更多
关键词 Vibrating durability shock random transitive modes water-wheel ACCELERATION velocity DISPLACEMENT pumped-storage
下载PDF
Pressure fluctuation propagation of a pump turbine at pump mode under low head condition 被引量:19
6
作者 GUO Lei LIU JinTao +2 位作者 WANG LeQin QIN DaQing WEI XianZhu 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第4期811-818,共8页
Pressure fluctuation at the vaneless space and vanes passages is one of the most important problems for the stable operation of a pump turbine. The fluctuation appears in any operating condition. Much research has bee... Pressure fluctuation at the vaneless space and vanes passages is one of the most important problems for the stable operation of a pump turbine. The fluctuation appears in any operating condition. Much research has been done on the pressure fluctuation of hydraulic machinery. However, the details of pressure fluctuation propagation of the pump turbine at the pump mode have not been revealed. The modem pump turbine with high water head requires the runner to be "flat", which would induce pressure fluctuation more easily than the low head pump turbine. In this article, a high head pump turbine model is used as the re- search object. As the pressure fluctuation at off-design point is more serious than at the design point, the low head condition is chosen as the research condition. Pressure fluctuation at the vaneless space and vanes passages is predicted by the computa- tional fluid dynamics method based on k-co shear stress transport model. The experiment conducted on the test rig of the Har- bin Institute of Large Electrical Machinery is used to verify the simulation method. It proves that the numerical method is a feasible way to research the fluctuation under this operating condition. The pressure fluctuation along the passage direction is analyzed at time and frequency domains. It is affected mainly by the interaction between the runner and vanes. In the circumferential direction, the influence of the special stay vane on the pressure fluctuation is got. The amplitude in the high-pressure side passage of that vane is lower than that in the other side. The study provides a basic understanding of the pressure fluctua- tion of a pump turbine and could be used as a reference to improve the operation stability of it. 展开更多
关键词 pump turbine pressure fluctuation vaneless space vanes passage pump mode low head
原文传递
Dynamic analysis on pressure fluctuation in vaneless region of a pump turbine 被引量:6
7
作者 LI DeYou GONG RuZhi +3 位作者 WANG HongJie XIANG GaoMing WEI XianZhu LIU ZhanSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第5期813-824,共12页
As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes e... As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes experience strong vibrations. However, most traditional studies were carried out based on constant GVO(guide vane opening) simulations. In this work, dynamic analysis on pressure fluctuation in the vaneless region of a pump turbine model was conducted using a dynamic mesh method in turbine mode. 3D unsteady simulations were conducted where GVO was closed and opened by 1° from the initial 18°. Detailed time domain and frequency domain characteristics on pressure fluctuation in the vaneless region under different guide vane rotational states compared with constant GVO simulations were investigated. Results show that, during the guide vanes oscillating process, the low and intermediate frequency components in the vaneless region are significantly different. The amplitudes of pressure fluctuation are higher than those with constant GVO simulations, which agree better with the experimental data. In addition, the pressure fluctuation increases when GVO is opened, and vice versa. It can be concluded that pressure fluctuation in the vaneless region is strongly influenced by the oscillating of the guide vanes. 展开更多
关键词 fluctuation turbine agree unsteady listed operated opened creased Figure inlet
原文传递
Influences of the Three Gorges Project on seismic activities in the reservoir area 被引量:12
8
作者 Yun-Sheng Yao Qiu-Liang Wang +5 位作者 Wu-Lin Liao Li-Fen Zhang Jun-Hua Chen Jing-Gang Li Li Yuan Yan-Nan Zhao 《Science Bulletin》 SCIE EI CAS CSCD 2017年第15期1089-1098,共10页
Reservoir-induced earthquakes related with the construction of the Three Gorges Project have attracted great concerns of the public. Since the first water impoundment on May 25, 2003, a number of earthquakes have occu... Reservoir-induced earthquakes related with the construction of the Three Gorges Project have attracted great concerns of the public. Since the first water impoundment on May 25, 2003, a number of earthquakes have occurred during the water storage stages, in which the largest was the Badong M5.1 earthquake on December 16, 2013. In this paper, the relationships between seismic activities, b value, seismic parameters, and reservoir water level fluctuations are studied. In addition, based on the digital seismic waveform data obtained since 2000, the focal depth changes and focal mechanism characteristics before and after the water impoundment are studied as well. These provide us important information to understand the earthquake mechanisms. The results show that these earthquakes are typical reservoir-induced earthquakes, which are closely related to water infiltration, pore pressure, and water level fluctuations.The majority of the micro and small earthquakes are caused by karst collapse, mine collapse, bank reformation, superficial unloading, and so on. The larger earthquakes are related to the fault structures to some extent. Due to the persistent effects of water impoundment on the seismic and geological environments around the reservoir and water infiltration into the rocks, the influences on the crustal deformation field, gravity field, seepage field, and fault medium-softening action may vary gradually from a higher strength to a weaker one. Therefore, it is possible that small earthquakes and few medium earthquakes(M≤5.5) will occur in the reservoir area in the future. 展开更多
关键词 Three Gorges Project Earthquake monitoring network Reservoir-induced earthquake Seismic activity b value Focal mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部