Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electro...Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.展开更多
Using Object-oriented design and a new programming language JAVA, a physically-based model was built to simulate the hydrological, alkalization/de-alkalization and salinization/desalinization processes in soil. Furthe...Using Object-oriented design and a new programming language JAVA, a physically-based model was built to simulate the hydrological, alkalization/de-alkalization and salinization/desalinization processes in soil. Furthermore, a process-based model was built to evaluate the dynamics of four herbaceous ecosystems (including dynamics of above-ground biomass, below-ground biomass, and litter biomass), each dominated by Aneurolepidium chinense (Trin.) Kitag., Chloris virgata Sw., Puccinellia tenuiflora (Turcz.) Scribn. et Merr. and Suaeda glauca Bunge. This model is a daily-time step model, suitable for simulating hydrological, alkalization/de-alkalization and salinization/desalinization processes of heterogeneous soil, and growth dynamics of different grassland communities. With climatic data and experimental data of Changling Experimental Site in Jilin Province, the soil moisture content (in 1991, 1996, 1997 and 1998), soil salt concentration, exchangeable cation percentage and pH in soil and growth dynamics of these four sorts of grassland communities (in 1991) were simulated and the results were verified to be in accord with observed data.展开更多
The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by...The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.展开更多
Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the eq...Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.展开更多
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the ef...Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.展开更多
This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated depos...This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.展开更多
Levulinic acid is considered as a promising green platform chemical derived from biomass.The kinetics of levulinic acid accumulation in the hydrolysis process of wheat straw was investigated in the study.Using dilute ...Levulinic acid is considered as a promising green platform chemical derived from biomass.The kinetics of levulinic acid accumulation in the hydrolysis process of wheat straw was investigated in the study.Using dilute sulfuric acid as a catalyst,the kinetic experiments were performed in a temperature range of 190-230°C and an acid concentration range of 1%-5% (by mass) .A simple model of first-order series reactions was developed,which provided a satisfactory interpretation of the experimental results.The kinetics of main intermediates including sugar and 5-hydroxymethylfurfural(5-HMF) were also established.The kinetic parameters provided useful information for understanding the hydrolysis process.展开更多
The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two lan...The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.展开更多
Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange...Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange,reversible and irreversible adsorption, may occur during pollutants removal by MIEX. This work examined the removal mechanism of 17α-Ethinylestradiol(EE2) by MIEX. As one of typical estrogen micro-pollutants,EE2 existed as neutral molecule in natural water, and its charge density was close to zero [(0.00000219 ±0.00000015) meq·(μg EE2)^(-1)] based on the potentiometric titration method. However, the removal of EE2 by MIEX was much higher than that of other micro-pollutants previously reported. Multi-cycle adsorptionregeneration experiments and ion exchange stoichiometry analysis were conducted to elucidate the removal mechanism of EE2 by MIEX resin. The results suggested that the main removal mechanism of EE2 by MIEX was ion exchange instead of reversible micro-pore adsorption. The experimental analysis based on Donnan theory indicated that the internal micro-environment of resin beads was alkaline, in the alkaline environment EE2 would be ionized into negatively charged groups. As a result, ion exchange reaction occurred inside the pore of MIEX resin, and the removal process of EE2 by MIEX was dominated by the ion exchange reaction.展开更多
The Dynamic Matrix Control (DMC) algorithm tor integral processes is investigated in this paper. The reason why the original DMC algorithm cannot be applied to these processes is analyzed. The shifting matrix is tra...The Dynamic Matrix Control (DMC) algorithm tor integral processes is investigated in this paper. The reason why the original DMC algorithm cannot be applied to these processes is analyzed. The shifting matrix is transformed into another form and the corresponding theorem is proved, then its applicable range is extended. Compared with other algorithms on the integral processes, this algorithm is more practical and simple to implement. Simulation results also prove its validity. Applying this algorithm, we succeed in the control of the boiler level system in power units.展开更多
The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North ...The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.展开更多
In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the r...In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.展开更多
The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forc...The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.展开更多
Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-t...Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-thawing condition. Based on the latest research at home and abroad,through the investigation of soil moisture-salt change in the freeze-thawing process,the conclusion is made that the soil water potential gradient is the main driving force of soil salt movement and the factors are of quantities. The research shows that,when freezing,temperature drops,salt and moisture move towards frozen layer. All make the salinity content of the frozen layer increase significantly. In the thawing process,salinity and moisture in the soil move up again with evaporation and makes the salt second migration.展开更多
The given investigation presents the results of estimating the water circulation in the water area of the Bering Sea and the Sea of Okhotsks, considering the influence of various types of the atmospheric processes. To...The given investigation presents the results of estimating the water circulation in the water area of the Bering Sea and the Sea of Okhotsks, considering the influence of various types of the atmospheric processes. To solve the given problem it is used a hydrodynamic model calculating the integral functions of the flow from the surface to the bottom. By results of calculations, the maps of the integral water circulation were built for the following types of atmospheric circulation: "north-western" and "okhotsk-aleutian". In accordance with the performed calculations for the water area being studied, the hydrodynamic structures are distinguished both non-depending and depending on the type of the atmospheric circulation. The non-depending structures are characterized by the cyclonic activity in the Bering Sea and the Sea of Okhotsk in whole. Hydrodynamic structures depending on types of the atmospheric circulation have their peculiarities in the spatial-temporal distribution.展开更多
To simulate the soil moisture variation in cropland, a two-parameter exponential recession model was derived to depict the recession process of soil moisture in the root zone. The model is based on the assumption that...To simulate the soil moisture variation in cropland, a two-parameter exponential recession model was derived to depict the recession process of soil moisture in the root zone. The model is based on the assumption that the recession rate of soil water is proportional to the potential evapotranspiration rate and the difference of soil water content and steady soil water content. Two parameters in this model are soil texture-dependent recession constant and steady soil water content. The model was calibrated and validated with measured soil water data at two experiment sites in North China with different soil textures and cropping systems. Coefficients of determination between measured and model simulated soil water content were all greater than 0.7, indicating that both models gave satisfactory simulation results. Results showed that values of two parameters mentioned above are both larger for finer soil than those for coarser soil. At the same potential evapotranspiration rate and soil water content, the recession rate of finer soil is usually lower than that of coarser soil. The proposed model can be used in irrigation management to predict approximate date for irrigation, as well as be embedded into watershed hydrological models to estimate the antecedent precipitation index.展开更多
In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also c...In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also considered as a frontline approach to alleviate hazards. Currently, the key issues are the imbalance between the limited lifespan of equipment, the relatively long period between the recurrences of such hazards, and the wide range of critical rainfall that trigger these disasters. This paper attempts to provide a stepwise multi-parameter debris flow warning system after taking into account the shortcomings observed in other warning systems. The whole system is divided into five stages. Differentwarning levels can be issued based on the critical rainfall thresholds. Monitoring starts when early warning is issued and it continues with debris flow near warning, triggering warning, movement warning and hazard warning stages. For early warning, historical archives of earthquake and drought are used to choose a debris flow-susceptible site for further monitoring. Secondly, weather forecasts provide an alert of possible near warning. Hazardous precipitation, model calculation and debris flow initiation tests, pore pressure sensors and water content sensors are combined to check the critical rainfall and to publically announce a triggering warning. In the final two stages, equipment such as rainfall gauges, flow stage sensors, vibration sensors, low sound sensors and infrasound meters are used to assess movement processes and issue hazardwarnings. In addition to these warnings, communitybased knowledge and information is also obtained and discussed in detail. The proposed stepwise, multiparameter debris flow monitoring and warning system has been applied in Aizi valley China which continuously monitors the debris flow activities.展开更多
A strain secreting a strongly acidic polysaccharide flocculating agent was isolated from activated sludge, and identified as Bacillus brevis. The bioflocculant was produced by RL-2 during the late logarithmic growth i...A strain secreting a strongly acidic polysaccharide flocculating agent was isolated from activated sludge, and identified as Bacillus brevis. The bioflocculant was produced by RL-2 during the late logarithmic growth in the batch culture and was recovered from supernatant by ethanol precipitation. The bioflocculant is thermo-stable as its activity remains stable after heated at 100 °C for 45 min. Its flocculating activity with kaolin suspensions was stimulated by the addition of Ca2+, Al3+ and Cu2+. The flocculant consists of glucose, mannose, and galacturonic acid. Its average molecular mass was estimated to be approximately 2.86×105 by the method of viscosity. The flocculant aggregates various inorganic and organic compounds in solution.展开更多
For the cyclic process of mass transfer in tray columns there are considered the hydrodynamic models of liquid flow during steam supply and during overflow of liquid from tray to tray. During steam supply, the hydrody...For the cyclic process of mass transfer in tray columns there are considered the hydrodynamic models of liquid flow during steam supply and during overflow of liquid from tray to tray. During steam supply, the hydrodynamic model is determined as perfect displacement model, and during liquid overflow, it is described as cell model. There were received the characteristics of liquid flow as follows: average residence time of liquid, degree of dispersion around the mean on the tray, number of perfect mixing cells depending on multiplication factor of exchange of liquid delay. In Y-X coordinates there is depicted a work line and theoretical stage of perfect displacement model. There were considered the conditions of mutual transfer of theoretical stage and theoretical stage with perfect displacement. The advantages of the mass transfer cyclic process to the stationary one arc stated.展开更多
文摘Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.
文摘Using Object-oriented design and a new programming language JAVA, a physically-based model was built to simulate the hydrological, alkalization/de-alkalization and salinization/desalinization processes in soil. Furthermore, a process-based model was built to evaluate the dynamics of four herbaceous ecosystems (including dynamics of above-ground biomass, below-ground biomass, and litter biomass), each dominated by Aneurolepidium chinense (Trin.) Kitag., Chloris virgata Sw., Puccinellia tenuiflora (Turcz.) Scribn. et Merr. and Suaeda glauca Bunge. This model is a daily-time step model, suitable for simulating hydrological, alkalization/de-alkalization and salinization/desalinization processes of heterogeneous soil, and growth dynamics of different grassland communities. With climatic data and experimental data of Changling Experimental Site in Jilin Province, the soil moisture content (in 1991, 1996, 1997 and 1998), soil salt concentration, exchangeable cation percentage and pH in soil and growth dynamics of these four sorts of grassland communities (in 1991) were simulated and the results were verified to be in accord with observed data.
基金Under the auspices of the National Natural Science Foundation of China (No. 30570303)
文摘The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.
基金Supported by the National Natural Science Foundation of China(61072127) the Outstanding Young Innovative Personnel Project of Guangdong Colleges(LYM08098)
文摘Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.
基金Under the auspices of National Basic Research Program of China(No.2011CB403303)National Natural Science Foundation of China(No.41571276)+1 种基金Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.162101510004)Foundation of Yellow River Institute of Hydraulic Research of China(No.HKY-JBYW-2016-33)
文摘Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.
基金funded by The China Geological Survey (Grant No. 12120113010200)Ministry of Science and Technology of the People’s Republic of China (Grant No. 2011FY110100-5)The National Natural Science Foundation of China (Grant No. 41101086)
文摘This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.
基金Supported by the National Key Technology R&D Program of China (2007BAD66B04)
文摘Levulinic acid is considered as a promising green platform chemical derived from biomass.The kinetics of levulinic acid accumulation in the hydrolysis process of wheat straw was investigated in the study.Using dilute sulfuric acid as a catalyst,the kinetic experiments were performed in a temperature range of 190-230°C and an acid concentration range of 1%-5% (by mass) .A simple model of first-order series reactions was developed,which provided a satisfactory interpretation of the experimental results.The kinetics of main intermediates including sugar and 5-hydroxymethylfurfural(5-HMF) were also established.The kinetic parameters provided useful information for understanding the hydrolysis process.
基金supported by a project of the National Key Research and Development Program of China (Grant No.2016YFA0602501)a project of the National Natural Science Foundation of China (Grant Nos.41630532 and 41575093)
文摘The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.
基金Supported by the National Natural Science Foundation of China(51678408,51478314,51638011)the National Key Research and Development Program of China(2016YFC0400506)+1 种基金the Natural Science Foundation of Tianjin(14JCQNJC09000)the Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology(TJKLASTZD-2016-06)
文摘Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange,reversible and irreversible adsorption, may occur during pollutants removal by MIEX. This work examined the removal mechanism of 17α-Ethinylestradiol(EE2) by MIEX. As one of typical estrogen micro-pollutants,EE2 existed as neutral molecule in natural water, and its charge density was close to zero [(0.00000219 ±0.00000015) meq·(μg EE2)^(-1)] based on the potentiometric titration method. However, the removal of EE2 by MIEX was much higher than that of other micro-pollutants previously reported. Multi-cycle adsorptionregeneration experiments and ion exchange stoichiometry analysis were conducted to elucidate the removal mechanism of EE2 by MIEX resin. The results suggested that the main removal mechanism of EE2 by MIEX was ion exchange instead of reversible micro-pore adsorption. The experimental analysis based on Donnan theory indicated that the internal micro-environment of resin beads was alkaline, in the alkaline environment EE2 would be ionized into negatively charged groups. As a result, ion exchange reaction occurred inside the pore of MIEX resin, and the removal process of EE2 by MIEX was dominated by the ion exchange reaction.
文摘The Dynamic Matrix Control (DMC) algorithm tor integral processes is investigated in this paper. The reason why the original DMC algorithm cannot be applied to these processes is analyzed. The shifting matrix is transformed into another form and the corresponding theorem is proved, then its applicable range is extended. Compared with other algorithms on the integral processes, this algorithm is more practical and simple to implement. Simulation results also prove its validity. Applying this algorithm, we succeed in the control of the boiler level system in power units.
基金Supported by the National Natural Science Foundation of China (Nos. 40906005, 40830106, 40730953, GYHY201106017)the National Basic Research Program of China (973 Program) (No. 2010CB428504)the National Key Technologies Research and Development Program of China (No. 2009BAC51B01)
文摘The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.
基金Supported by the National Natural Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.
基金Supported by the NationaJ Natural Science Foundation of China (21106176), President Fund of GUCAS (Y15101JY00), China Postdoctoral Science Foundation (2012T50155) and National Basic Research Program of China (2009CB219903).
文摘The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.
文摘Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-thawing condition. Based on the latest research at home and abroad,through the investigation of soil moisture-salt change in the freeze-thawing process,the conclusion is made that the soil water potential gradient is the main driving force of soil salt movement and the factors are of quantities. The research shows that,when freezing,temperature drops,salt and moisture move towards frozen layer. All make the salinity content of the frozen layer increase significantly. In the thawing process,salinity and moisture in the soil move up again with evaporation and makes the salt second migration.
文摘The given investigation presents the results of estimating the water circulation in the water area of the Bering Sea and the Sea of Okhotsks, considering the influence of various types of the atmospheric processes. To solve the given problem it is used a hydrodynamic model calculating the integral functions of the flow from the surface to the bottom. By results of calculations, the maps of the integral water circulation were built for the following types of atmospheric circulation: "north-western" and "okhotsk-aleutian". In accordance with the performed calculations for the water area being studied, the hydrodynamic structures are distinguished both non-depending and depending on the type of the atmospheric circulation. The non-depending structures are characterized by the cyclonic activity in the Bering Sea and the Sea of Okhotsk in whole. Hydrodynamic structures depending on types of the atmospheric circulation have their peculiarities in the spatial-temporal distribution.
基金Under the auspices of National Natural Science Foundation of China(No.51279077,91125017)
文摘To simulate the soil moisture variation in cropland, a two-parameter exponential recession model was derived to depict the recession process of soil moisture in the root zone. The model is based on the assumption that the recession rate of soil water is proportional to the potential evapotranspiration rate and the difference of soil water content and steady soil water content. Two parameters in this model are soil texture-dependent recession constant and steady soil water content. The model was calibrated and validated with measured soil water data at two experiment sites in North China with different soil textures and cropping systems. Coefficients of determination between measured and model simulated soil water content were all greater than 0.7, indicating that both models gave satisfactory simulation results. Results showed that values of two parameters mentioned above are both larger for finer soil than those for coarser soil. At the same potential evapotranspiration rate and soil water content, the recession rate of finer soil is usually lower than that of coarser soil. The proposed model can be used in irrigation management to predict approximate date for irrigation, as well as be embedded into watershed hydrological models to estimate the antecedent precipitation index.
基金supported by the National Natural Science Foundation of China(Grant Nos.41661134012 and 41501012)Foundation for selected young scientists,Institute of Mountain Hazards and Environment,CAS(Grant Nos.SDSQN-1306,Y3L1340340,sds-135-1202-02)
文摘In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also considered as a frontline approach to alleviate hazards. Currently, the key issues are the imbalance between the limited lifespan of equipment, the relatively long period between the recurrences of such hazards, and the wide range of critical rainfall that trigger these disasters. This paper attempts to provide a stepwise multi-parameter debris flow warning system after taking into account the shortcomings observed in other warning systems. The whole system is divided into five stages. Differentwarning levels can be issued based on the critical rainfall thresholds. Monitoring starts when early warning is issued and it continues with debris flow near warning, triggering warning, movement warning and hazard warning stages. For early warning, historical archives of earthquake and drought are used to choose a debris flow-susceptible site for further monitoring. Secondly, weather forecasts provide an alert of possible near warning. Hazardous precipitation, model calculation and debris flow initiation tests, pore pressure sensors and water content sensors are combined to check the critical rainfall and to publically announce a triggering warning. In the final two stages, equipment such as rainfall gauges, flow stage sensors, vibration sensors, low sound sensors and infrasound meters are used to assess movement processes and issue hazardwarnings. In addition to these warnings, communitybased knowledge and information is also obtained and discussed in detail. The proposed stepwise, multiparameter debris flow monitoring and warning system has been applied in Aizi valley China which continuously monitors the debris flow activities.
文摘A strain secreting a strongly acidic polysaccharide flocculating agent was isolated from activated sludge, and identified as Bacillus brevis. The bioflocculant was produced by RL-2 during the late logarithmic growth in the batch culture and was recovered from supernatant by ethanol precipitation. The bioflocculant is thermo-stable as its activity remains stable after heated at 100 °C for 45 min. Its flocculating activity with kaolin suspensions was stimulated by the addition of Ca2+, Al3+ and Cu2+. The flocculant consists of glucose, mannose, and galacturonic acid. Its average molecular mass was estimated to be approximately 2.86×105 by the method of viscosity. The flocculant aggregates various inorganic and organic compounds in solution.
文摘For the cyclic process of mass transfer in tray columns there are considered the hydrodynamic models of liquid flow during steam supply and during overflow of liquid from tray to tray. During steam supply, the hydrodynamic model is determined as perfect displacement model, and during liquid overflow, it is described as cell model. There were received the characteristics of liquid flow as follows: average residence time of liquid, degree of dispersion around the mean on the tray, number of perfect mixing cells depending on multiplication factor of exchange of liquid delay. In Y-X coordinates there is depicted a work line and theoretical stage of perfect displacement model. There were considered the conditions of mutual transfer of theoretical stage and theoretical stage with perfect displacement. The advantages of the mass transfer cyclic process to the stationary one arc stated.