Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electro...Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.展开更多
The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by...The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.展开更多
Understanding streamflow changes in terms of trends and periodicities and relevant causes is the first step into scientific management of water resources in a changing environment. In this study, monthly streamflow va...Understanding streamflow changes in terms of trends and periodicities and relevant causes is the first step into scientific management of water resources in a changing environment. In this study, monthly streamflow variations were analyzed using Modified Mann-Kendall(MM-K) trend test and Continuous Wavelet Transform(CWT) methods at 9 hydrological stations in the Huaihe River Basin. It was found that: 1) streamflow mainly occurs during May to September, accounting for 70.4% of the annual total streamflowamount with Cv values between 0.16–0.85 and extremum ratio values between 1.70–23.90; 2) decreased streamflow can be observed in the Huaihe River Basin and significant decreased streamflow can be detected during April and May, which should be the results of precipitation change and increased irrigation demand; 3) significant periods of 2–4 yr were detected during the 1960 s, the 1980 s and the 2000 s. Different periods were found at stations concentrated within certain regions implying periods of streamflow were caused by different influencing factors for specific regions; 4) Pacific Decadal Oscillation(PDO) has the most significant impacts on monthly streamflow mainly during June. Besides, Southern Oscillation Index(SOI), North Atlantic Oscillation(NAO) and the Ni?o3.4 Sea Surface Temperature(Ni?o3.4) have impacts on monthly streamflow with three months lags, and was less significant in time lag of six months. Identification of critical climatic factors having impacts on streamflow changes can help to predict monthly streamflow changes using climatic factors as explanatory variables. These findings were well corroborated by results concerning impacts of El Nino-Southern Oscillation(ENSO) regimes on precipitation events across the Huaihe River Basin. The results of this study can provide theoretical background for basin-scale management of water resources and agricultural irrigation.展开更多
Underground water (Borehole) has been the main alternative source of drinking water for most communities in my country. Previous studies have revealed high levels of contamination. The origin of which can be attribu...Underground water (Borehole) has been the main alternative source of drinking water for most communities in my country. Previous studies have revealed high levels of contamination. The origin of which can be attributed to geochemical processes, combustion of fossil fuels, mining and anthropogenic activities. Most borehole water and well water in local communities of Nigeria are not safe for drinking due to heavy industrial and environmental pollution. This study was undertaken to assess the quality in some selected boreholes in the Port Harcourt metropolis for a period of two years. Borehole water samples were randomly collected from thirteen boreholes in a local community in plastic bottles (100 mL) in the months of September for the years of study (2010 & 2011). Four out of the seven heavy metals analyzed were found to be present in the first year of study. These were Fe, Cu, Mn and Zn. In the second year of study, Pb, Cr, Fe and Co were not detected in all of the samples except Cu and Fe which were present in only two samples. Mn and Zn were found to be present in all of the samples for both years of study.展开更多
This study aims to determine the relationships between local meteorological conditions,proglacial river discharge and biogeochemical processes operating in a periglacial basin located in the Polar Ural mountain range,...This study aims to determine the relationships between local meteorological conditions,proglacial river discharge and biogeochemical processes operating in a periglacial basin located in the Polar Ural mountain range, Russia. Fieldwork was conducted in the catchment of Obruchev Glacier(13 km2) during the summer peak flow period in 2008. River discharge was dominated by snowmelt and changed from 3300 l s-1 to less than 1000 l s-1. The mean daily air temperatures of stations situated in the mountain tundra and near Obruchev Glacier from July 11 th to August 1st 2008 were 14.4°C and 10.3°C, respectively. The glacial river had low total dissolved solids varying from 4.5 to 9 mg l-1 and coefficients of correlation between Na+ and Cl-, K+ and Cl-, as well as NH4+ and Cl- were 0.94, 0.90 and 0.84, respectively. Rainfall events affected the snowmelt initiation and provided an essential part of the discharge during the intense snowmelt period, which occurred from July 11 th to July 18 th 2008. Data showed that Na+ and K+ in the surface water derived from snowmelt rather than chemical weathering of silicates. Also, it was obtained that NO3- derived from the melting snowpack, whereas ammonification occurring under the snowpacks was the primary source for NH4+.展开更多
Ultrafiltration is a new practical technique of a chemical process, its development prospect is very broad, so it is a very wide application in chemical process, this paper combined with ultrafiltration technique in a...Ultrafiltration is a new practical technique of a chemical process, its development prospect is very broad, so it is a very wide application in chemical process, this paper combined with ultrafiltration technique in a ultrafiltration company, the ultrafiltration technique should be used to analyzes and discusses in ultrafiltration process. Finally, the article gives the process of ultrafiltration technology in city living water, ultrafiltration technology has the advantages of simple process, convenient operation, low energy consumption, good removal effect of phosphorus in chemical enhanced ultrafiltration micelle research field.展开更多
"Rasi" (cassava-by product) instant cream soup is a processed food product that is made of a mixture of"Rasi" flour, full cream milk powder, beef broth, and spices that are ready to be consumed after being brewe..."Rasi" (cassava-by product) instant cream soup is a processed food product that is made of a mixture of"Rasi" flour, full cream milk powder, beef broth, and spices that are ready to be consumed after being brewed with boiling water to become a thick solution. Complex bonding of fat in full cream milk powder and amylose in rasi flour causes the formation of a hydrophobic layer around granules, inhibiting water absorption during rehydration. The aim of experiment was to define the appropriate concentration of full cream milk powder, to be used in making "Rasi" instant cream soup with the best characteristic and the most preferable by panelist. The method used was experimental method with randomize block design with six treatments and four repetitions. The treatments on full cream milk concentration were A (12.5%), B (15%), C (17.5%), D (20%), E (22.5%) and F (25%), respectively. "Rasi" instant cream soup with E treatment (22.5%) gives the best physical and chemical characteristics and organoleptics accepted by panelists, having an average value of rehydration 405, 16%, 575 cP viscocity, 4.74% water, 16.49% fat, 12.01% protein, average value of rendemen about 28.32% and panelist preference value of Rasi cream soup instan's colour, taste, flavor, and thickness after rehydration were accepted.展开更多
This study aimed at the physical, chemical and biochemical changes during ripening of Sweetsop (Annona squamosa L.) and Golden Apple (Spondias citherea Sonner) fruits during ripening as important features to bette...This study aimed at the physical, chemical and biochemical changes during ripening of Sweetsop (Annona squamosa L.) and Golden Apple (Spondias citherea Sonner) fruits during ripening as important features to better understand their postharvest handling. It was carried out physical analysis such as firmness and chemical analysis such as total chlorophyll, total carotenoids, soluble solids, pectins and titrable acidity and biochemical analysis such as pectin methyl esterase, polygalacturonase, cellulase, and peroxidase and polyphenoloxidase activities in crude extract. Fruits were harvested at different stages of ripening. Experimental design was completely randomized and was carried out analysis of variance and Tukey tests, Total chlorophyll was decreasing in later stages of ripening, total soluble solid contents increased as the fruits ripen, while the acidity expressed percentage of citric acid decreased during fruits ripening. The loss of firmness and soluble solids content increased as the fruit get ripped stage, while the content of pectin decreased. Activity was observed for pectin methyl esterase and polygalacturonase enzymes during all stages of maturation, presenting the highest activity for both enzymes in the mature state. No cellulase activity detected at any stage during the ripening of these fruits. Activity of the enzyme polyphenoloxidase and peroxidase, associated with pulp browning was higher in the last stages of ripening of these fruits. Physical, chemical and biochemical patterns during ripening were different according to fruit species suggesting differential postharvest handling requirements.展开更多
Language is the carrier of culture. We should not only focus on skills in teaching Korean culture, but also conduct a comprehensive analysis and guidance to penetrate culture and education of Korea in the teaching pro...Language is the carrier of culture. We should not only focus on skills in teaching Korean culture, but also conduct a comprehensive analysis and guidance to penetrate culture and education of Korea in the teaching process. Which enhance the overall level. This thesis analyze and elaborate the characteristics of Korean teaching intercultural education. What' s more, it will propose corresponding solutions in penetration problems of culture and education for the Korean teaching.展开更多
The Merguellil catchment (central Tunisia) has undergone rapid hydrological changes over the last decades. The most visible signs are a marked decrease in surface runoff in the upstream catchment and a complete chan...The Merguellil catchment (central Tunisia) has undergone rapid hydrological changes over the last decades. The most visible signs are a marked decrease in surface runoff in the upstream catchment and a complete change in the recharge processes of the Kairouan aquifer downstream. Fluctuations in rainfall have had a real but limited hydrological impact. Much more important are the consequences of human activities such as soil and water conservation works, small and large dams, pumping for irrigation. Several independent approaches were implemented: hydrodynamics, thermal surveys, geochemistry including isotopes. They helped to identify the different terms of the regional water balance and to characterize their changes over time.展开更多
Boron concentrations and isotope compositions have been measured for 93 water samples from the hot springs and drill-holes in the geothermal system in the Yunnan-Tibet Geothermal Belt(YTGB),China.Boron concentrations ...Boron concentrations and isotope compositions have been measured for 93 water samples from the hot springs and drill-holes in the geothermal system in the Yunnan-Tibet Geothermal Belt(YTGB),China.Boron concentrations range from 0.036–472.4ppm,and theδ11B values range from -16.0‰to 13.1‰,indicating the non-marine origin for each geothermal system.We observed a clear binary mixing relationship between the B concentrations and B isotope compositions in Tibet geothermal area.This relationship can be well explained by two sources,i.e.,marine carbonate rocks and magmatic rocks,for the Tibet geothermal water.No evidence supports a mantle contribution to B.In addition,we found that the precipitation only plays a dilution role for B of geothermal waters.δ11B values for the precipitation across the southern Tibetan Plateau area range from -6.0‰ to -6.8‰at least.Due to data scarcity in Yunnan geothermal area,we observed possible different boron sources from the Tibet geothermal system.Comparing it with other geothermal systems in the world,we found that the samples from YTGB have the lowestδ11B values and the largest range of B concentration,which might be related to their special geological background.On the whole,the world geothermalδ11B-Cl/B relation suggests a mixing process between marine and non-marine sources.Additionally,we suggest that B source of B-enriched geothermal waters is mainly from B-enriched crustal country-rocks,instead of mantle.展开更多
As a common pollutant of nitrogen in groundwater, nitrate contamination has become a major concern worldwide. Baseflow, one of the dominant hydrological pathways for nitrate migration to streamflow, has been confirmed...As a common pollutant of nitrogen in groundwater, nitrate contamination has become a major concern worldwide. Baseflow, one of the dominant hydrological pathways for nitrate migration to streamflow, has been confirmed as a leading nitrate source for stream water where groundwater or subsurface flow contaminated heavily by nitrate. That is, sufficient improvements of water quality may not be attained without proper management for baseflow, even if non-point sources(NPS) pollutants discharged through surface runoff are being well managed. This article reviews the primary nitrate sources, the main factors affecting its transport, and the methodologies for baseflow nitrate estimation, to give some recommendations for future works, including:(1) giving sufficient consideration for the effects of climatological, morphological, and geological factors on baseflow recessions to obtain more reliable and accurate baseflow separation;(2) trying to solve calibration and validation problems for baseflow loads determining in storm flow period;(3) developing a simple and convenient algorithm with certain physics that can be used to separate baseflow NPS pollution from the total directly in different regions, for a reliable estimation of baseflow NPS pollution at larger scale(e.g., national scale);(4) improving groundwater quality simulation module of existing NPS pollution models to have a better simulation for biogeochemical processes in shallow aquifers;(5) taking integrated measures of "source control", "process interception" and "end remediation" to prevent and control NPS nitrate pollution effectively, not just only the strict control of nutrients loss from surface runoff.展开更多
Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemi...Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemistry (e.g. major ions, pH, EC and TDS) meas- urement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca^2^, Mg2+, Na^+ and CI) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou g^acier basin during June 2012 to September 2013. Results showed that 6D and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of 6D and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably im- plied that the glacier runoff was mainly originated from glacier melting and precipitation supply The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.展开更多
文摘Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.
基金Under the auspices of the National Natural Science Foundation of China (No. 30570303)
文摘The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.
基金Under the auspices of National Science Foundation of China(No.41601023,41771536)National Science Foundation for Distinguished Young Scholars of China(No.51425903)+2 种基金State Key Laboratory of Earth Surface Processes and Resource Ecology(No.2017-KF-04)Creative Research Groups of National Natural Science Foundation of China(No.41621061)Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-201720)
文摘Understanding streamflow changes in terms of trends and periodicities and relevant causes is the first step into scientific management of water resources in a changing environment. In this study, monthly streamflow variations were analyzed using Modified Mann-Kendall(MM-K) trend test and Continuous Wavelet Transform(CWT) methods at 9 hydrological stations in the Huaihe River Basin. It was found that: 1) streamflow mainly occurs during May to September, accounting for 70.4% of the annual total streamflowamount with Cv values between 0.16–0.85 and extremum ratio values between 1.70–23.90; 2) decreased streamflow can be observed in the Huaihe River Basin and significant decreased streamflow can be detected during April and May, which should be the results of precipitation change and increased irrigation demand; 3) significant periods of 2–4 yr were detected during the 1960 s, the 1980 s and the 2000 s. Different periods were found at stations concentrated within certain regions implying periods of streamflow were caused by different influencing factors for specific regions; 4) Pacific Decadal Oscillation(PDO) has the most significant impacts on monthly streamflow mainly during June. Besides, Southern Oscillation Index(SOI), North Atlantic Oscillation(NAO) and the Ni?o3.4 Sea Surface Temperature(Ni?o3.4) have impacts on monthly streamflow with three months lags, and was less significant in time lag of six months. Identification of critical climatic factors having impacts on streamflow changes can help to predict monthly streamflow changes using climatic factors as explanatory variables. These findings were well corroborated by results concerning impacts of El Nino-Southern Oscillation(ENSO) regimes on precipitation events across the Huaihe River Basin. The results of this study can provide theoretical background for basin-scale management of water resources and agricultural irrigation.
文摘Underground water (Borehole) has been the main alternative source of drinking water for most communities in my country. Previous studies have revealed high levels of contamination. The origin of which can be attributed to geochemical processes, combustion of fossil fuels, mining and anthropogenic activities. Most borehole water and well water in local communities of Nigeria are not safe for drinking due to heavy industrial and environmental pollution. This study was undertaken to assess the quality in some selected boreholes in the Port Harcourt metropolis for a period of two years. Borehole water samples were randomly collected from thirteen boreholes in a local community in plastic bottles (100 mL) in the months of September for the years of study (2010 & 2011). Four out of the seven heavy metals analyzed were found to be present in the first year of study. These were Fe, Cu, Mn and Zn. In the second year of study, Pb, Cr, Fe and Co were not detected in all of the samples except Cu and Fe which were present in only two samples. Mn and Zn were found to be present in all of the samples for both years of study.
基金supported by the Institute of Geography and Spatial Management at Jagiellonian University
文摘This study aims to determine the relationships between local meteorological conditions,proglacial river discharge and biogeochemical processes operating in a periglacial basin located in the Polar Ural mountain range, Russia. Fieldwork was conducted in the catchment of Obruchev Glacier(13 km2) during the summer peak flow period in 2008. River discharge was dominated by snowmelt and changed from 3300 l s-1 to less than 1000 l s-1. The mean daily air temperatures of stations situated in the mountain tundra and near Obruchev Glacier from July 11 th to August 1st 2008 were 14.4°C and 10.3°C, respectively. The glacial river had low total dissolved solids varying from 4.5 to 9 mg l-1 and coefficients of correlation between Na+ and Cl-, K+ and Cl-, as well as NH4+ and Cl- were 0.94, 0.90 and 0.84, respectively. Rainfall events affected the snowmelt initiation and provided an essential part of the discharge during the intense snowmelt period, which occurred from July 11 th to July 18 th 2008. Data showed that Na+ and K+ in the surface water derived from snowmelt rather than chemical weathering of silicates. Also, it was obtained that NO3- derived from the melting snowpack, whereas ammonification occurring under the snowpacks was the primary source for NH4+.
文摘Ultrafiltration is a new practical technique of a chemical process, its development prospect is very broad, so it is a very wide application in chemical process, this paper combined with ultrafiltration technique in a ultrafiltration company, the ultrafiltration technique should be used to analyzes and discusses in ultrafiltration process. Finally, the article gives the process of ultrafiltration technology in city living water, ultrafiltration technology has the advantages of simple process, convenient operation, low energy consumption, good removal effect of phosphorus in chemical enhanced ultrafiltration micelle research field.
文摘"Rasi" (cassava-by product) instant cream soup is a processed food product that is made of a mixture of"Rasi" flour, full cream milk powder, beef broth, and spices that are ready to be consumed after being brewed with boiling water to become a thick solution. Complex bonding of fat in full cream milk powder and amylose in rasi flour causes the formation of a hydrophobic layer around granules, inhibiting water absorption during rehydration. The aim of experiment was to define the appropriate concentration of full cream milk powder, to be used in making "Rasi" instant cream soup with the best characteristic and the most preferable by panelist. The method used was experimental method with randomize block design with six treatments and four repetitions. The treatments on full cream milk concentration were A (12.5%), B (15%), C (17.5%), D (20%), E (22.5%) and F (25%), respectively. "Rasi" instant cream soup with E treatment (22.5%) gives the best physical and chemical characteristics and organoleptics accepted by panelists, having an average value of rehydration 405, 16%, 575 cP viscocity, 4.74% water, 16.49% fat, 12.01% protein, average value of rendemen about 28.32% and panelist preference value of Rasi cream soup instan's colour, taste, flavor, and thickness after rehydration were accepted.
文摘This study aimed at the physical, chemical and biochemical changes during ripening of Sweetsop (Annona squamosa L.) and Golden Apple (Spondias citherea Sonner) fruits during ripening as important features to better understand their postharvest handling. It was carried out physical analysis such as firmness and chemical analysis such as total chlorophyll, total carotenoids, soluble solids, pectins and titrable acidity and biochemical analysis such as pectin methyl esterase, polygalacturonase, cellulase, and peroxidase and polyphenoloxidase activities in crude extract. Fruits were harvested at different stages of ripening. Experimental design was completely randomized and was carried out analysis of variance and Tukey tests, Total chlorophyll was decreasing in later stages of ripening, total soluble solid contents increased as the fruits ripen, while the acidity expressed percentage of citric acid decreased during fruits ripening. The loss of firmness and soluble solids content increased as the fruit get ripped stage, while the content of pectin decreased. Activity was observed for pectin methyl esterase and polygalacturonase enzymes during all stages of maturation, presenting the highest activity for both enzymes in the mature state. No cellulase activity detected at any stage during the ripening of these fruits. Activity of the enzyme polyphenoloxidase and peroxidase, associated with pulp browning was higher in the last stages of ripening of these fruits. Physical, chemical and biochemical patterns during ripening were different according to fruit species suggesting differential postharvest handling requirements.
文摘Language is the carrier of culture. We should not only focus on skills in teaching Korean culture, but also conduct a comprehensive analysis and guidance to penetrate culture and education of Korea in the teaching process. Which enhance the overall level. This thesis analyze and elaborate the characteristics of Korean teaching intercultural education. What' s more, it will propose corresponding solutions in penetration problems of culture and education for the Korean teaching.
文摘The Merguellil catchment (central Tunisia) has undergone rapid hydrological changes over the last decades. The most visible signs are a marked decrease in surface runoff in the upstream catchment and a complete change in the recharge processes of the Kairouan aquifer downstream. Fluctuations in rainfall have had a real but limited hydrological impact. Much more important are the consequences of human activities such as soil and water conservation works, small and large dams, pumping for irrigation. Several independent approaches were implemented: hydrodynamics, thermal surveys, geochemistry including isotopes. They helped to identify the different terms of the regional water balance and to characterize their changes over time.
基金supported by National Natural Science Foundation of China(Grant Nos.41203012,41030317)China Geological Survey(Grant No.1212011085524)
文摘Boron concentrations and isotope compositions have been measured for 93 water samples from the hot springs and drill-holes in the geothermal system in the Yunnan-Tibet Geothermal Belt(YTGB),China.Boron concentrations range from 0.036–472.4ppm,and theδ11B values range from -16.0‰to 13.1‰,indicating the non-marine origin for each geothermal system.We observed a clear binary mixing relationship between the B concentrations and B isotope compositions in Tibet geothermal area.This relationship can be well explained by two sources,i.e.,marine carbonate rocks and magmatic rocks,for the Tibet geothermal water.No evidence supports a mantle contribution to B.In addition,we found that the precipitation only plays a dilution role for B of geothermal waters.δ11B values for the precipitation across the southern Tibetan Plateau area range from -6.0‰ to -6.8‰at least.Due to data scarcity in Yunnan geothermal area,we observed possible different boron sources from the Tibet geothermal system.Comparing it with other geothermal systems in the world,we found that the samples from YTGB have the lowestδ11B values and the largest range of B concentration,which might be related to their special geological background.On the whole,the world geothermalδ11B-Cl/B relation suggests a mixing process between marine and non-marine sources.Additionally,we suggest that B source of B-enriched geothermal waters is mainly from B-enriched crustal country-rocks,instead of mantle.
基金supported by the National Natural Science Foundation of China(Grant No.41571216)the Chinese National Key Technology R&D Program(Grant No.2012BAC17B01)
文摘As a common pollutant of nitrogen in groundwater, nitrate contamination has become a major concern worldwide. Baseflow, one of the dominant hydrological pathways for nitrate migration to streamflow, has been confirmed as a leading nitrate source for stream water where groundwater or subsurface flow contaminated heavily by nitrate. That is, sufficient improvements of water quality may not be attained without proper management for baseflow, even if non-point sources(NPS) pollutants discharged through surface runoff are being well managed. This article reviews the primary nitrate sources, the main factors affecting its transport, and the methodologies for baseflow nitrate estimation, to give some recommendations for future works, including:(1) giving sufficient consideration for the effects of climatological, morphological, and geological factors on baseflow recessions to obtain more reliable and accurate baseflow separation;(2) trying to solve calibration and validation problems for baseflow loads determining in storm flow period;(3) developing a simple and convenient algorithm with certain physics that can be used to separate baseflow NPS pollution from the total directly in different regions, for a reliable estimation of baseflow NPS pollution at larger scale(e.g., national scale);(4) improving groundwater quality simulation module of existing NPS pollution models to have a better simulation for biogeochemical processes in shallow aquifers;(5) taking integrated measures of "source control", "process interception" and "end remediation" to prevent and control NPS nitrate pollution effectively, not just only the strict control of nutrients loss from surface runoff.
基金National Natural Science Foundation of China,No.41301065The West Light Program for Talent Cultivation of Chinese Academy of Sciences
文摘Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemistry (e.g. major ions, pH, EC and TDS) meas- urement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca^2^, Mg2+, Na^+ and CI) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou g^acier basin during June 2012 to September 2013. Results showed that 6D and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of 6D and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably im- plied that the glacier runoff was mainly originated from glacier melting and precipitation supply The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.