Cryptomelane has been widely applied as catalyst in oxidation reactions due to its excellent redox properties and low cost.Here,a novel one-pot hydrothermal synthesis using a potassium permanganate aqueous solution as...Cryptomelane has been widely applied as catalyst in oxidation reactions due to its excellent redox properties and low cost.Here,a novel one-pot hydrothermal synthesis using a potassium permanganate aqueous solution as precursor and ethanol as reducing agent has successfully been developed to obtain cryptomelane nano-oxides.This synthetic route makes it possible to control the amount of potassium incorporated into the structure of the cryptomelane by selecting the appropriate synthesis temperature and ethanol initial concentration.Taking advantage of this approach,the effect of potassium concentration on the structural stability and reducibility of the cryptomelane,which are poorly discussed in the literature,has been studied.We have observed that samples with low content of potassium(~11%)show high conversions of CO to CO2 especially at low temperatures.The lower activity of the samples with high K contents(~16%)can be ascribed to the beneficial effect of K on the structural stability of cryptomelane in detriment of labile oxygen on cryptomelane surface.展开更多
A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed cou...A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.展开更多
Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device.The experimental data for pure CH4 or CO2+deionized water ...Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device.The experimental data for pure CH4 or CO2+deionized water systems showed good agreement with those in the literatures.This kind of method was then applied to CH4/CO2+sodium dodecyl sulfate(SDS)aqueous solution,CH4/CO2+SDS aqueous solution+silica sand,and(CH4+C2H6+C3H8)gas mixture+SDS aqueous solution systems,where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions.The feasibility and reliability of the step-heating method,especially for porous media systems and gas mixtures systems were determined.The experimental data for CO2+silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96μm.The formation equilibrium pressure was also measured by the reformation of hydrate.展开更多
The physicochemical properties,including the density,viscosity,and refractive index of aqueous solutions of sodium glycinate as a solvent for CO_2 absorption in the non-precipitation regime were measured under the wid...The physicochemical properties,including the density,viscosity,and refractive index of aqueous solutions of sodium glycinate as a solvent for CO_2 absorption in the non-precipitation regime were measured under the wide temperature range of 298.15 to 343.15 K.The concentration of the sodium glycinate in an aqueous form in the non-precipitation regime was identified up to 2.0 mol ? L^(-1).The coefficients of thermal expansion values were estimated from measured density data.It was found that,the densities,viscosities and refractive indices of the aqueous sodium glycinate decrease with an increase in temperature,whereas with increasing sodium glycinate concentration in the solution,all three properties increase.Thermal expansion coefficients slightly increase with rising temperature and concentration.The measured values of density,viscosity and refractive index were correlated as a function of temperature by using the least squares method.The predicted data obtained from correlation equations for all measured properties were in fairly good agreement with the experimental data.展开更多
The paper shows a method of designing a heat exchanger recovering heat from the condensation of water vapour contained in flue gases. A heat exchanger condenses water vapour and SO2 (sulphur dioxide) in the presence...The paper shows a method of designing a heat exchanger recovering heat from the condensation of water vapour contained in flue gases. A heat exchanger condenses water vapour and SO2 (sulphur dioxide) in the presence of inert gases (CO2, CO, N2, O2) contained in flue gases. A mathematical model and a sample design of a heat exchanger were presented. The heat exchange is capable of recovering from a dozen or so to several dozen percent of heat from flue gases escaping into the atmosphere. A second advantage of the heat exchanger is the possibility to reduce the emissions of SO2 considerably. Depending on the parameters, it can be even a sevenfold reduction in the emissions. The main mathematical tool used for designing the condensing heat exchanger is the Colburn-Hougen method. The authors omitted that part of the method which requires iterative calculations. The Mollier diagram was used instead.展开更多
Nowadays,it is a matter of great concern to design electrode materials with excellent electrochemical performance for supercapacitors by a safe,efficient and simple method.And these characteristics are usually related...Nowadays,it is a matter of great concern to design electrode materials with excellent electrochemical performance for supercapacitors by a safe,efficient and simple method.And these characteristics are usually related to the vacancies and impurities in the electrode.To investigate the effect of the vacancies on the electrochemical properties of the supercapacitor cathode material,the uniform reduced CoNi2S4(r-CoNi2S4)nanosheets with sulfur vacancies have been successfully prepared by a one-step hydrothermal method.And the formation of sulfur vacancies are characterized by Raman,X-ray photoelectron spectroscopy and other means.As the electrode for supercapacitor,the r-CoNi2S4 nanosheet electrode delivers a high capacity of 1918.9 Fg-1 at a current density of 1 A g-1,superior rate capability(87.9%retention at a current density of 20 A g-1)and extraordinary cycling stability.Compared with the original CoNi2S4 nanosheet electrode(1226 F g-1at current density of 1 A g-1),the r-CoNi2S4 nanosheet electrode shows a great improvement.The asymmetric supercapacitor based on the r-CoNi2S4 positive electrode and activated carbon negative electrode exhibits a high energy density of 30.3 Wh kg-1 at a power density of 802.1 W kg-1,as well as excellent long-term cycling stability.The feasibility and great potential of the device in practical applications have been successfully proved by lightening the light emitting diodes of three different colors.展开更多
基金supported by the Ministry of Science and Innovation of Spain/FEDER Program of the EU(MAT2013-50137-EXP,MAT 2013-40823-R and ENE2017-82451-C3-2-R)~~
文摘Cryptomelane has been widely applied as catalyst in oxidation reactions due to its excellent redox properties and low cost.Here,a novel one-pot hydrothermal synthesis using a potassium permanganate aqueous solution as precursor and ethanol as reducing agent has successfully been developed to obtain cryptomelane nano-oxides.This synthetic route makes it possible to control the amount of potassium incorporated into the structure of the cryptomelane by selecting the appropriate synthesis temperature and ethanol initial concentration.Taking advantage of this approach,the effect of potassium concentration on the structural stability and reducibility of the cryptomelane,which are poorly discussed in the literature,has been studied.We have observed that samples with low content of potassium(~11%)show high conversions of CO to CO2 especially at low temperatures.The lower activity of the samples with high K contents(~16%)can be ascribed to the beneficial effect of K on the structural stability of cryptomelane in detriment of labile oxygen on cryptomelane surface.
基金Projects(51474251,51874351) supported by the National Natural Science Foundation of China
文摘A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.
基金Supported by the National Natural Science Foundation of China (20676145, U0633003), the National Basic Research Program of China (2009CB219504) and the Program for New Century Excellent Talents in University of the State Ministry of Education.
文摘Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device.The experimental data for pure CH4 or CO2+deionized water systems showed good agreement with those in the literatures.This kind of method was then applied to CH4/CO2+sodium dodecyl sulfate(SDS)aqueous solution,CH4/CO2+SDS aqueous solution+silica sand,and(CH4+C2H6+C3H8)gas mixture+SDS aqueous solution systems,where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions.The feasibility and reliability of the step-heating method,especially for porous media systems and gas mixtures systems were determined.The experimental data for CO2+silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96μm.The formation equilibrium pressure was also measured by the reformation of hydrate.
基金Universiti Teknologi PETRONAS for providing financial support(Grant number YUTP-15-8209-005)RCCO_2C for technical support to complete the present research work
文摘The physicochemical properties,including the density,viscosity,and refractive index of aqueous solutions of sodium glycinate as a solvent for CO_2 absorption in the non-precipitation regime were measured under the wide temperature range of 298.15 to 343.15 K.The concentration of the sodium glycinate in an aqueous form in the non-precipitation regime was identified up to 2.0 mol ? L^(-1).The coefficients of thermal expansion values were estimated from measured density data.It was found that,the densities,viscosities and refractive indices of the aqueous sodium glycinate decrease with an increase in temperature,whereas with increasing sodium glycinate concentration in the solution,all three properties increase.Thermal expansion coefficients slightly increase with rising temperature and concentration.The measured values of density,viscosity and refractive index were correlated as a function of temperature by using the least squares method.The predicted data obtained from correlation equations for all measured properties were in fairly good agreement with the experimental data.
文摘The paper shows a method of designing a heat exchanger recovering heat from the condensation of water vapour contained in flue gases. A heat exchanger condenses water vapour and SO2 (sulphur dioxide) in the presence of inert gases (CO2, CO, N2, O2) contained in flue gases. A mathematical model and a sample design of a heat exchanger were presented. The heat exchange is capable of recovering from a dozen or so to several dozen percent of heat from flue gases escaping into the atmosphere. A second advantage of the heat exchanger is the possibility to reduce the emissions of SO2 considerably. Depending on the parameters, it can be even a sevenfold reduction in the emissions. The main mathematical tool used for designing the condensing heat exchanger is the Colburn-Hougen method. The authors omitted that part of the method which requires iterative calculations. The Mollier diagram was used instead.
基金supported by the National Natural Science Foundation of China(61376011 and 51402141)Gansu Provincial Natural Science Foundation(17JR5RA198)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2018-119 and lzujbky-2018-ct08)Shenzhen Science and Technology Innovation Committee(JCYJ20170818155813437)。
文摘Nowadays,it is a matter of great concern to design electrode materials with excellent electrochemical performance for supercapacitors by a safe,efficient and simple method.And these characteristics are usually related to the vacancies and impurities in the electrode.To investigate the effect of the vacancies on the electrochemical properties of the supercapacitor cathode material,the uniform reduced CoNi2S4(r-CoNi2S4)nanosheets with sulfur vacancies have been successfully prepared by a one-step hydrothermal method.And the formation of sulfur vacancies are characterized by Raman,X-ray photoelectron spectroscopy and other means.As the electrode for supercapacitor,the r-CoNi2S4 nanosheet electrode delivers a high capacity of 1918.9 Fg-1 at a current density of 1 A g-1,superior rate capability(87.9%retention at a current density of 20 A g-1)and extraordinary cycling stability.Compared with the original CoNi2S4 nanosheet electrode(1226 F g-1at current density of 1 A g-1),the r-CoNi2S4 nanosheet electrode shows a great improvement.The asymmetric supercapacitor based on the r-CoNi2S4 positive electrode and activated carbon negative electrode exhibits a high energy density of 30.3 Wh kg-1 at a power density of 802.1 W kg-1,as well as excellent long-term cycling stability.The feasibility and great potential of the device in practical applications have been successfully proved by lightening the light emitting diodes of three different colors.