A series of clay/poly(N-isopropylacrylamide-co-acrylamide) nanocomposite hydrogels (S-N-M gels) have been successfully prepared by in situ polymerization. The mechanical properties, swelling behavior of S-N-M gels...A series of clay/poly(N-isopropylacrylamide-co-acrylamide) nanocomposite hydrogels (S-N-M gels) have been successfully prepared by in situ polymerization. The mechanical properties, swelling behavior of S-N-M gels and the transparency changes during polymerization of S-N-M gels have been systematically investigated. Compared to traditional hydrogels, S-N-M gels show excellent tensile properties and their swelling ratio increases with increasing acrylamide (AAm) content. The results of stress relaxation indicate that the stress loss decreases with increasing AAm content. It was surprisingly found that the transparency during all S-N-M gel synthesis changes abruptly, and the changes become more abrupt with increasing N-isopropylacrylamide content. It was concluded that the fact may be related to the hydrophilicity of copolymers. The weaker the hydrophilicity of copolymer, the more apparent the transparency change during S-N-M gels polymerization. We believe the relationship between hydrophilicity of copolymer and transparency changes will help to design novel nanocomposite hydrogels.展开更多
A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substitutin...A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.展开更多
The purpose of this work is to perform a detailed study of carbohydrate specificity of the new extracellular bacilli lectins which is considered to determine mechanisms of the lectins action. Sources of lectins were b...The purpose of this work is to perform a detailed study of carbohydrate specificity of the new extracellular bacilli lectins which is considered to determine mechanisms of the lectins action. Sources of lectins were bacterial strains from Ukrainian collection of microorganisms. The optimized protocol of bacilli lectins isolation and purification included precipitation with ammonium sulfate with subsequent gel filtration chromatography on Sepharose CL-6B. Hemagglutinating activity of bacilli lectins and their fine carbohydrate specificity to sialic acids and their derivatives as well as sialic asid-containing and asialic glycoconjugates were studied. The ability of extracellular bacilli lectins to discriminate a- and 13-conformation of carbohydrate molecule and the type of connection between the monomers was determined. Studied lectins showed the most affinity to glycoconjugates containing both types of sialic acids (N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (NeuGc)) and it is supposed to be a basis of their diagnostic and analytical potential.展开更多
In this paper, a model is presented to correlate and predict the swelling behavior of hydrogels in aqueous solutions of electrolytes. The model is a combination of VERS-model, 'phantom network' theory and '...In this paper, a model is presented to correlate and predict the swelling behavior of hydrogels in aqueous solutions of electrolytes. The model is a combination of VERS-model, 'phantom network' theory and 'free-volume' contribution. The VERS-model is used to calculate Gibbs excess energy; 'phantom network' theory to describe the elastic properties of polymer network, and 'free-volume' contribution to account for additional difference in the size of the species. To test the model, a series of N-isopropylacrylamide based hydrogels are synthesized by free radical polymerization in oxygen-free, deionized water at 25℃ under nitrogen atmosphere. Then, the degree of swelling of all investigated gels as well as the partition of the solute between the gel phase and the surrounding coexisting liquid phase are measured in aqueous solution of sodium chloride. The model test demonstrates that the swelling behavior correlated and predicted by the model agrees with the experimental data within the experimental uncertainty. The phase transition appeared in the experiment, and the influences of the total mass fraction of polymerizable materials ζgel as well as the mole fraction of the crosslinking agent yCR on the swelling behavior of IPAAm-gels can also be predicted correctly. All these show the potential of such model for correlation and prediction of the swelling behavior of hydrogels in aqueous solutions of electrolytes.展开更多
基金the National Natural Science Foundation of China (Project No.50473002),and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No.704021). the National High-tech 863 Project (2002AA302616), and the Shanghai Nano Special Projects (0452nm006, 05nm05005).
文摘A series of clay/poly(N-isopropylacrylamide-co-acrylamide) nanocomposite hydrogels (S-N-M gels) have been successfully prepared by in situ polymerization. The mechanical properties, swelling behavior of S-N-M gels and the transparency changes during polymerization of S-N-M gels have been systematically investigated. Compared to traditional hydrogels, S-N-M gels show excellent tensile properties and their swelling ratio increases with increasing acrylamide (AAm) content. The results of stress relaxation indicate that the stress loss decreases with increasing AAm content. It was surprisingly found that the transparency during all S-N-M gel synthesis changes abruptly, and the changes become more abrupt with increasing N-isopropylacrylamide content. It was concluded that the fact may be related to the hydrophilicity of copolymers. The weaker the hydrophilicity of copolymer, the more apparent the transparency change during S-N-M gels polymerization. We believe the relationship between hydrophilicity of copolymer and transparency changes will help to design novel nanocomposite hydrogels.
文摘A novel class of xanthan-maleic anhydride (Xan-MA)/poly(N-isopropylacrylamide) hybrid hydrogels was designed and synthesized by solution polymerization. The xanthan-based precursor (Xan-MA) was prepared by substituting the hydroxyl groups in Xan by MA. This Xan-MA precursor was then polymerized with a known temperature sensitive precursor (N-isopropylacrylamide, NIPAAm) to form hybrid hydrogels with a series range of composition ratio of Xan-MA to NIPAAm precursors. These smart hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination, differential scanning calorimertry for thermal property. And maximum swelling ratio, swelling kinetics and temperature response kinetics were studied. The data obtained clearly show that these smart hydrogels are responsive to the external changes of temperature as well as pH value. The magnitudes of smart and hydrogel properties of these hybrid hydrogels depend on the feed composition ratio of the two precursors. With the increase of the content of Xan-MA the maximum swelling ratio, reswelling ratio and thermo-sensitivities increase, and the feed composition ratio of Xan-MA/NIPAAm increases the maximum swelling ratio augment from 13.88 to 23.21. From XMN0, XMN1, XMN3 to XMN5, the lower critical solution temperatures (LCSTs) are 33.02, 36.15, 40.28 and 41.92 ℃, respectively. By changing the composition ratio of these two precursors, the LCST of the hybrid hydrogels could also be adjusted to be or near the body temperature for the potential applications in bioengineering and biotechnology fields.
文摘The purpose of this work is to perform a detailed study of carbohydrate specificity of the new extracellular bacilli lectins which is considered to determine mechanisms of the lectins action. Sources of lectins were bacterial strains from Ukrainian collection of microorganisms. The optimized protocol of bacilli lectins isolation and purification included precipitation with ammonium sulfate with subsequent gel filtration chromatography on Sepharose CL-6B. Hemagglutinating activity of bacilli lectins and their fine carbohydrate specificity to sialic acids and their derivatives as well as sialic asid-containing and asialic glycoconjugates were studied. The ability of extracellular bacilli lectins to discriminate a- and 13-conformation of carbohydrate molecule and the type of connection between the monomers was determined. Studied lectins showed the most affinity to glycoconjugates containing both types of sialic acids (N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (NeuGc)) and it is supposed to be a basis of their diagnostic and analytical potential.
基金Supported by the Scientific Research Foundation for the Returned Overseas Chineses Sehiors of State Education Ministry, Science Technology Ministry of Fujian (No. 2001Z046).
文摘In this paper, a model is presented to correlate and predict the swelling behavior of hydrogels in aqueous solutions of electrolytes. The model is a combination of VERS-model, 'phantom network' theory and 'free-volume' contribution. The VERS-model is used to calculate Gibbs excess energy; 'phantom network' theory to describe the elastic properties of polymer network, and 'free-volume' contribution to account for additional difference in the size of the species. To test the model, a series of N-isopropylacrylamide based hydrogels are synthesized by free radical polymerization in oxygen-free, deionized water at 25℃ under nitrogen atmosphere. Then, the degree of swelling of all investigated gels as well as the partition of the solute between the gel phase and the surrounding coexisting liquid phase are measured in aqueous solution of sodium chloride. The model test demonstrates that the swelling behavior correlated and predicted by the model agrees with the experimental data within the experimental uncertainty. The phase transition appeared in the experiment, and the influences of the total mass fraction of polymerizable materials ζgel as well as the mole fraction of the crosslinking agent yCR on the swelling behavior of IPAAm-gels can also be predicted correctly. All these show the potential of such model for correlation and prediction of the swelling behavior of hydrogels in aqueous solutions of electrolytes.