Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content an...Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content and chloroplast structure little changed in the course of desiccation, therefore has been called homoiochlorophyllous desiccation-tolerant plants (HDTs). Another type of resurrection angiosperms that lost its chlorophyll dining desiccation is called poikilochlorophyllous desiccation-tolerant plants (PDTs). HDTs have been received more attention because of simplicity of protection mechanism which is much easy to the study and utilization of the desiccation tolerance of resurrection angiosperms. Recent advances in studies of photosynthesis of resurrection angiosperms indicate that photochemical activities are sensitive indicators for the study of physiological state of resurrection angiosperms during desiccation and rehydration. Photochemical activities of resurrection angiosperms are inhibited with loss of water similar to those of general plants, however, the magic thing is that they could reactivate rapidly during rehydration even losing more than 95% water. Up-regulations in xanthophyll cycle and antioxidative systems as well as preservation in integrity and stability of photosynthetic membranes during desiccation may be very important to desiccation tolerance of resurrection angiosperms. The fact that phosphate treatment in rehydration stage also strongly influences resurrection indicated importance of studies on rehydration stages of resurrection angiosperms.展开更多
Density functional theory calculations were performed to study the structures and relative stability of the gadolinium complexes, Gd(H2O)n^3+ (n=8,9), in vacuo and in aqueous solution. The polarizable continuum m...Density functional theory calculations were performed to study the structures and relative stability of the gadolinium complexes, Gd(H2O)n^3+ (n=8,9), in vacuo and in aqueous solution. The polarizable continuum model with various radii for the solute cavity was used to study the relative stability in aqueous solution. The calculated molecular geometries for n=8 and 9 obtained in vacuo are consistent with those observed in experiments. It was found that while the nona-aqua complex is favored in the gas phase, in aqueous solution the octa-aqua conformation is preferred. This result, independent of the types of cavities employed, is in agreement with the experimental observation. The reliability of the present calculation was also addressed by comparing the calculated and experimental free energy of hydration, which revealed that the UA0, UAHF, and UAKS cavities are most appropriate when only the first solvation shell is treated explicitly.展开更多
A reconstruction strategy has been developed to synthesize Cu-SAPO-34 with a wide crystallization phase region,high solid yield,and tunable Si and Cu contents.Cu-rich SAPO-34 was prepared from a Cu-amine complex,which...A reconstruction strategy has been developed to synthesize Cu-SAPO-34 with a wide crystallization phase region,high solid yield,and tunable Si and Cu contents.Cu-rich SAPO-34 was prepared from a Cu-amine complex,which acted as a precursor and Cu source for the reconstruction synthesis.The role of the Cu-amine complex as a template was restricted,which allowed easier control over the Cu and Si contents than in the previously reported"one-pot"synthesis method.Characterization of the material revealed that the Si(4Al)coordination environment dominates the synthesized Cu-SAPO-34 catalysts.High-temperature hydrothermal treatment increased the isolated Cu2+content slightly,and the acid sites in the low-silica catalyst are more resistant to hydrothermal treatment than those of the existing catalysts.The obtained materials,especially the low-silica Cu-SAPO-34 sample,exhibit excellent catalytic activity and hydrothermal stability for the selective catalytic reduction of NOx by NH3(NH3-SCR).In addition,the influence of the catalyst acidity on the NH3-SCR reaction was also investigated and is discussed.The high synthetic efficiency and outstanding catalytic performance make Cu-SAPO-34 synthesized by the reconstruction method a promising catalyst for the NH3-SCR process.展开更多
The low‐temperature hydrothermal stabilities of Cu‐SAPO‐34samples with various Si contents and Cu loadings were systematically investigated.The NH3oxidation activities and NH3‐selective catalytic reduction(SCR)act...The low‐temperature hydrothermal stabilities of Cu‐SAPO‐34samples with various Si contents and Cu loadings were systematically investigated.The NH3oxidation activities and NH3‐selective catalytic reduction(SCR)activities(mainly the low‐temperature activities)of all the Cu‐SAPO‐34catalysts declined after low‐temperature steam treatment(LTST).These results show that the texture and acid density of Cu‐SAPO‐34can be better preserved by increasing the Cu loading,although the hydrolysis of Si-O-Al bonds is inevitable.The stability of Cu ions and the stability of the SAPO framework were positively correlated at relatively low Cu loadings.However,a high Cu loading(e.g.,3.67wt%)resulted in a significant decrease in the number of isolated Cu ions.Aggregation of CuO particles also occurred during the LTST,which accounts for the decreasing NH3oxidation activities of the catalysts.Among the catalysts,Cu‐SAPO‐34with a high Si content and medium Cu content(1.37wt%)showed the lowest decrease in NH3‐SCR because its Cu2+content was well retained and its acid density was well preserved.展开更多
The conversion of biomass-derived products to fine chemicals and fuels is extremely important for the utilization of renewable energy sources.Water is not only a by-product formed during the hydrogenation of biomass-d...The conversion of biomass-derived products to fine chemicals and fuels is extremely important for the utilization of renewable energy sources.Water is not only a by-product formed during the hydrogenation of biomass-derived oxygenated chemicals,but also an inexpensive and nontoxic solvent.The instability of solid catalysts for aqueous-phase reactions caused by metal leaching and the collapse of a catalyst support represents a significant challenge.In this work,various catalyst stabilization strategies including the nanospace and interfacial confinements that prevent sintering and leaching of metal nanoparticles as well as modification methods for increasing the support stability are summarized and systemically discussed.In addition,feasible approaches to designing stable and efficient heterogeneous catalysts for aqueous-phase reactions are proposed.展开更多
The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP tre...The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP treating were analyzed and characterized by XRF, XRD, NMR, IR, BET and DTA. The results showed that, in comparison with the conventional ultra-stable zeolite DASY-0.0 prepared by the hydrothermal process, the CP-modified zeolite SOY0 exhibited a higher relative crystallinity, a larger surface area and pore volume, a higher thermal stability and contained less amorohous non-framework A1.展开更多
The mesoporous Al-SBA-15 zeolite was obtained via impregnation of pure silica-based SBA-15 zeolite with aluminum nitrate.The Al-SBA-15 sample was calcined in air at 800 ℃ for 6 h and hydrothermally treated at near 1...The mesoporous Al-SBA-15 zeolite was obtained via impregnation of pure silica-based SBA-15 zeolite with aluminum nitrate.The Al-SBA-15 sample was calcined in air at 800 ℃ for 6 h and hydrothermally treated at near 100 ℃ for 120 h,respectively,and then the thermal and hydrothermal stability of Al-SBA-15 sample was investigated by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and nitrogen adsorption and desorption techniques.The Al-SBA-15 sample was also studied by 27 Al nuclear magnetic resonance (27 Al NMR) and ammonia temperature programmed desorption (NH 3-TPD) techniques.In addition,the catalytic activity of Al-SBA-15 zeolite was investigated by the Friedel-Crafts reactions of 2,4-di-tert-butylphenol with cinnamyl alcohol.The test results showed that the thermal and hydrothermal stability of Al-SBA-15 zeolite was better than that of SBA-15 zeo-lite.The Al-SBA-15 zeolite sample prepared by impregnation method exhibits more framework aluminum species and Al-O-Si units.Therefore,the number of the surface hydroxyl groups was reduced,resulting in the stabilization of framework structure ofAl-SBA-15 zeolite.The aluminum species can form weak and medium-strong acid sites with catalytic activity.展开更多
CuO,as a promising photocathode material,suffers from severe photocorrosion in photoelectrochemical water splitting applications.Herein,a Cu_(3)N protection shell was used to protect the CuO photocathode for the first...CuO,as a promising photocathode material,suffers from severe photocorrosion in photoelectrochemical water splitting applications.Herein,a Cu_(3)N protection shell was used to protect the CuO photocathode for the first time to effectively suppress the photocorrosion of CuO.Consequently,the Cu_(3)N‐protected CuO photocathode shows improved stability,retaining 80% of its initial current density in a 20‐min test,while only 10%of the initial current density can be retained for the bare photocathode.This work may provide an important strategy for using Cu_(3)N shells to stabilize unstable photocathodes.展开更多
By taking advantage of silylanization, Al2O3 support was modified by organosilane and supported Pd-Cu-Clx/Al2O3 catalysts were prepared. The effects of hydrophobicity on catalyst stability during CO oxidation were inv...By taking advantage of silylanization, Al2O3 support was modified by organosilane and supported Pd-Cu-Clx/Al2O3 catalysts were prepared. The effects of hydrophobicity on catalyst stability during CO oxidation were investigated. The physicochemical properties and redox potential of the catalyst were characterized by N2 adsorption-desorption, XRD, H2-TPR, and XPS. In order to understand the relationship between the oxidation stability of CO and the presence of water, the CO oxidation mechanism was studied by in situ DRIFT. Support pretreatment markedly promoted catalyst stability during CO oxidation; CO conversion was 78% after 150 h at saturated humidity and freezing point. Modification led to an obvious decrease in chloride ion concentration and enhancement in hydrophobicity. The role of water in CO oxidation was complicated. The presence of water favored CO oxidation over active Pd~+ species and Pd0 reoxidation by Cu^(2+) species. Meanwhile, water also inhibited the formation of the active Pd~+ species and helped to produce carbonate species. Compared with the form of the carbonate species, the inhibition of water to produce active Pd~+ species played the main detrimental role in catalyst stability.展开更多
A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was f...A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.展开更多
In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, ...In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.展开更多
Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56....Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.展开更多
The interfacial compatibility of composite membrane is an important factor to its structural stability, andseparation performance. In this study, poly (ether sulfone) (PES) support layer was first hydrophilically ...The interfacial compatibility of composite membrane is an important factor to its structural stability, andseparation performance. In this study, poly (ether sulfone) (PES) support layer was first hydrophilically modified with poly(vinyl alcohol) (PVA) via surface segregation during the phase inversion process. Gelatin (GE) was then cast on the PVA-modified PES support layer as the active layer followed by crosslinking to fabricate composite membranes for ethanol dehydration. The enrichment of PVA on the surface of support layer improved interfacial compatibility of the as-prepared GE/PVA-PES composite membrane. The water contact angle measurement and X-ray photoelectron spectroscopy (XPS) data confirmed the surface segregation of PVA with a surface coverage density of -80%. T-peel test showed that the maxima/force to separate the support layer and the active layer was enhanced by 3 times compared with the GE/PES membrane. The effects of PVA content in the support layer, crosslinking of GE active layer and operating parameters on the pervaporative dehydration performance were investigated. The operational stability of the composite membrane was tested by immersing the membrane in ethanol aqueous solution for a period of time. Stable pervaporation performance for dehydration of 90% ethanol solution was obtained for GE/PVA-PES membrane with a separation factor of -60 and a permeation flux of -1910 g.m^-2.h1 without peeling over 28 days immersion.展开更多
文摘Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content and chloroplast structure little changed in the course of desiccation, therefore has been called homoiochlorophyllous desiccation-tolerant plants (HDTs). Another type of resurrection angiosperms that lost its chlorophyll dining desiccation is called poikilochlorophyllous desiccation-tolerant plants (PDTs). HDTs have been received more attention because of simplicity of protection mechanism which is much easy to the study and utilization of the desiccation tolerance of resurrection angiosperms. Recent advances in studies of photosynthesis of resurrection angiosperms indicate that photochemical activities are sensitive indicators for the study of physiological state of resurrection angiosperms during desiccation and rehydration. Photochemical activities of resurrection angiosperms are inhibited with loss of water similar to those of general plants, however, the magic thing is that they could reactivate rapidly during rehydration even losing more than 95% water. Up-regulations in xanthophyll cycle and antioxidative systems as well as preservation in integrity and stability of photosynthetic membranes during desiccation may be very important to desiccation tolerance of resurrection angiosperms. The fact that phosphate treatment in rehydration stage also strongly influences resurrection indicated importance of studies on rehydration stages of resurrection angiosperms.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10804001, No.10674002, and No.20773024), the National High Technology Research and Development Program of China (No.2006AA09Z243-3), and the Program for Innovative Research Team in Anhui Normal University of China.
文摘Density functional theory calculations were performed to study the structures and relative stability of the gadolinium complexes, Gd(H2O)n^3+ (n=8,9), in vacuo and in aqueous solution. The polarizable continuum model with various radii for the solute cavity was used to study the relative stability in aqueous solution. The calculated molecular geometries for n=8 and 9 obtained in vacuo are consistent with those observed in experiments. It was found that while the nona-aqua complex is favored in the gas phase, in aqueous solution the octa-aqua conformation is preferred. This result, independent of the types of cavities employed, is in agreement with the experimental observation. The reliability of the present calculation was also addressed by comparing the calculated and experimental free energy of hydration, which revealed that the UA0, UAHF, and UAKS cavities are most appropriate when only the first solvation shell is treated explicitly.
文摘A reconstruction strategy has been developed to synthesize Cu-SAPO-34 with a wide crystallization phase region,high solid yield,and tunable Si and Cu contents.Cu-rich SAPO-34 was prepared from a Cu-amine complex,which acted as a precursor and Cu source for the reconstruction synthesis.The role of the Cu-amine complex as a template was restricted,which allowed easier control over the Cu and Si contents than in the previously reported"one-pot"synthesis method.Characterization of the material revealed that the Si(4Al)coordination environment dominates the synthesized Cu-SAPO-34 catalysts.High-temperature hydrothermal treatment increased the isolated Cu2+content slightly,and the acid sites in the low-silica catalyst are more resistant to hydrothermal treatment than those of the existing catalysts.The obtained materials,especially the low-silica Cu-SAPO-34 sample,exhibit excellent catalytic activity and hydrothermal stability for the selective catalytic reduction of NOx by NH3(NH3-SCR).In addition,the influence of the catalyst acidity on the NH3-SCR reaction was also investigated and is discussed.The high synthetic efficiency and outstanding catalytic performance make Cu-SAPO-34 synthesized by the reconstruction method a promising catalyst for the NH3-SCR process.
基金supported by the National Natural Science Foundation of China(21676262,21506207,21606221)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC040)~~
文摘The low‐temperature hydrothermal stabilities of Cu‐SAPO‐34samples with various Si contents and Cu loadings were systematically investigated.The NH3oxidation activities and NH3‐selective catalytic reduction(SCR)activities(mainly the low‐temperature activities)of all the Cu‐SAPO‐34catalysts declined after low‐temperature steam treatment(LTST).These results show that the texture and acid density of Cu‐SAPO‐34can be better preserved by increasing the Cu loading,although the hydrolysis of Si-O-Al bonds is inevitable.The stability of Cu ions and the stability of the SAPO framework were positively correlated at relatively low Cu loadings.However,a high Cu loading(e.g.,3.67wt%)resulted in a significant decrease in the number of isolated Cu ions.Aggregation of CuO particles also occurred during the LTST,which accounts for the decreasing NH3oxidation activities of the catalysts.Among the catalysts,Cu‐SAPO‐34with a high Si content and medium Cu content(1.37wt%)showed the lowest decrease in NH3‐SCR because its Cu2+content was well retained and its acid density was well preserved.
文摘The conversion of biomass-derived products to fine chemicals and fuels is extremely important for the utilization of renewable energy sources.Water is not only a by-product formed during the hydrogenation of biomass-derived oxygenated chemicals,but also an inexpensive and nontoxic solvent.The instability of solid catalysts for aqueous-phase reactions caused by metal leaching and the collapse of a catalyst support represents a significant challenge.In this work,various catalyst stabilization strategies including the nanospace and interfacial confinements that prevent sintering and leaching of metal nanoparticles as well as modification methods for increasing the support stability are summarized and systemically discussed.In addition,feasible approaches to designing stable and efficient heterogeneous catalysts for aqueous-phase reactions are proposed.
文摘The ultra-stable zeolite DASY-0.0 was prepared by hydrothermal method in commercial scale. Its structure was further modified via the treatment for cleaning of pores (CP). The zeolite samples before and after CP treating were analyzed and characterized by XRF, XRD, NMR, IR, BET and DTA. The results showed that, in comparison with the conventional ultra-stable zeolite DASY-0.0 prepared by the hydrothermal process, the CP-modified zeolite SOY0 exhibited a higher relative crystallinity, a larger surface area and pore volume, a higher thermal stability and contained less amorohous non-framework A1.
文摘The mesoporous Al-SBA-15 zeolite was obtained via impregnation of pure silica-based SBA-15 zeolite with aluminum nitrate.The Al-SBA-15 sample was calcined in air at 800 ℃ for 6 h and hydrothermally treated at near 100 ℃ for 120 h,respectively,and then the thermal and hydrothermal stability of Al-SBA-15 sample was investigated by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and nitrogen adsorption and desorption techniques.The Al-SBA-15 sample was also studied by 27 Al nuclear magnetic resonance (27 Al NMR) and ammonia temperature programmed desorption (NH 3-TPD) techniques.In addition,the catalytic activity of Al-SBA-15 zeolite was investigated by the Friedel-Crafts reactions of 2,4-di-tert-butylphenol with cinnamyl alcohol.The test results showed that the thermal and hydrothermal stability of Al-SBA-15 zeolite was better than that of SBA-15 zeo-lite.The Al-SBA-15 zeolite sample prepared by impregnation method exhibits more framework aluminum species and Al-O-Si units.Therefore,the number of the surface hydroxyl groups was reduced,resulting in the stabilization of framework structure ofAl-SBA-15 zeolite.The aluminum species can form weak and medium-strong acid sites with catalytic activity.
文摘CuO,as a promising photocathode material,suffers from severe photocorrosion in photoelectrochemical water splitting applications.Herein,a Cu_(3)N protection shell was used to protect the CuO photocathode for the first time to effectively suppress the photocorrosion of CuO.Consequently,the Cu_(3)N‐protected CuO photocathode shows improved stability,retaining 80% of its initial current density in a 20‐min test,while only 10%of the initial current density can be retained for the bare photocathode.This work may provide an important strategy for using Cu_(3)N shells to stabilize unstable photocathodes.
基金supported by the National Key Research and Development Program of China(2016YFC0204300)National Natural Science Foundation of China(21207037,21333003,21571061)+1 种基金the "Shu Guang" Project of the Shanghai Municipal Education Commission(12SG29)the Commission of Science and Technology of Shanghai Municipality(15DZ1205305)~~
文摘By taking advantage of silylanization, Al2O3 support was modified by organosilane and supported Pd-Cu-Clx/Al2O3 catalysts were prepared. The effects of hydrophobicity on catalyst stability during CO oxidation were investigated. The physicochemical properties and redox potential of the catalyst were characterized by N2 adsorption-desorption, XRD, H2-TPR, and XPS. In order to understand the relationship between the oxidation stability of CO and the presence of water, the CO oxidation mechanism was studied by in situ DRIFT. Support pretreatment markedly promoted catalyst stability during CO oxidation; CO conversion was 78% after 150 h at saturated humidity and freezing point. Modification led to an obvious decrease in chloride ion concentration and enhancement in hydrophobicity. The role of water in CO oxidation was complicated. The presence of water favored CO oxidation over active Pd~+ species and Pd0 reoxidation by Cu^(2+) species. Meanwhile, water also inhibited the formation of the active Pd~+ species and helped to produce carbonate species. Compared with the form of the carbonate species, the inhibition of water to produce active Pd~+ species played the main detrimental role in catalyst stability.
基金Supported by the National Natural Science Foundation of China(21276123,21490581)the National High Technology Research and Development Program of China(2012AA03A606)+3 种基金State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)the Natural Science Research Plan of Jiangsu Universities(11KJB530006)the "Summit of the Six Top Talents" Program of Jiangsu Provincea Project Funded by the Priority Academic Program development of Jiangsu Higher Education Institutions(PAPD)
文摘A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.
文摘In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.
基金provided by the National Natural Science Foundation of China(No.21371055)the Hunan provincial Natural Science Foundation of China(No.11JJ2008)the Hunan provincial Colleges and Universities Innovation Platform Open Fund Project(No.15K049)
文摘Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.
基金Supported by the New Century Excellent Talents in University(NCET-10-0623)National Natural Science Foundation for Distinguished Young Scholars(21125627)+1 种基金National Basic Research Program of China(2009CB623404)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(Dong Hua University)
文摘The interfacial compatibility of composite membrane is an important factor to its structural stability, andseparation performance. In this study, poly (ether sulfone) (PES) support layer was first hydrophilically modified with poly(vinyl alcohol) (PVA) via surface segregation during the phase inversion process. Gelatin (GE) was then cast on the PVA-modified PES support layer as the active layer followed by crosslinking to fabricate composite membranes for ethanol dehydration. The enrichment of PVA on the surface of support layer improved interfacial compatibility of the as-prepared GE/PVA-PES composite membrane. The water contact angle measurement and X-ray photoelectron spectroscopy (XPS) data confirmed the surface segregation of PVA with a surface coverage density of -80%. T-peel test showed that the maxima/force to separate the support layer and the active layer was enhanced by 3 times compared with the GE/PES membrane. The effects of PVA content in the support layer, crosslinking of GE active layer and operating parameters on the pervaporative dehydration performance were investigated. The operational stability of the composite membrane was tested by immersing the membrane in ethanol aqueous solution for a period of time. Stable pervaporation performance for dehydration of 90% ethanol solution was obtained for GE/PVA-PES membrane with a separation factor of -60 and a permeation flux of -1910 g.m^-2.h1 without peeling over 28 days immersion.