Gongga Mountain, locates on the eastern edge of Tibetan Plateau of China, is the highest mountain in China except summits in Tibet. Only limited meteorological data on Gongga Mountain have been published so far. Here ...Gongga Mountain, locates on the eastern edge of Tibetan Plateau of China, is the highest mountain in China except summits in Tibet. Only limited meteorological data on Gongga Mountain have been published so far. Here we present the meteorological records from two stations, Moxi Station (at 1,621.7 m above sea level (a.s.1.), 1992- 2010) and Hailuogou Station (at 2,947.8 m a.s.l., 1988-2010), on the eastern slope of Gongga Mountain. In the past two decades, the annual precipitation decreased while the annual mean temperature increased at Hailuogou Station. Both precipitation and temperature increased at Moxi Station. The precipitation variation on the eastern slope of Gongga Mountain is influenced by both East Asian Monsoon and Indian Monsoon, so that the precipitation concentrated between May and October. The temperature variation on the eastern slope of Gongga Mountain in the past two decades showed similar trends as that of the northern hemispheric and global. In the past two decades, the temperature increased o.35℃ and o.3℃/decade at Hailuogou Station and Moxi Station respectively, which was higher than the increase extents of northern hemispheric and global temperature. The most intense warming occurred at the first decade of 21St century. The winter temperature increased more at Hailuogou Station than at Moxi Station. A remarkable increase of temperature in March was observed with only a little precipitation at both high and low altitude stations.展开更多
Xiliaohe River watershed plays an important role in regional and national grain security.With the development of society and economy,water consumption that increased dramatically causes water shortages.Crop water requ...Xiliaohe River watershed plays an important role in regional and national grain security.With the development of society and economy,water consumption that increased dramatically causes water shortages.Crop water requirement can provide quantitative basis for making regional irrigation scheme.In this study,spring maize water requirement is calculated by using PenmanMonteith formula and spring maize coefficient from May to September at 10 meteorological stations in Xiliaohe River watershed from 1951 to 2005.The variation trend of the spring maize water requirement during the whole growing stage,water requirement in every month,and meteorological influencing factors are obtained by using Mann-Kendall method,and the degree of grey incidence between the water requirement and meteorological influencing factors are shown.The results are the spring maize water requirement during the whole growing stages increases at half of the stations in Xiliaohe River watershed,and are remarkably affected by the water requirement in May.The monthly mean,maximum and minimum air temperature form May to September show an increasing trend in Xiliaohe River watershed in recent 55 years.The monthly mean and minimum air temperature increases notably.The relative humidity,precipitation,wind speed and sunshine show a decreasing trend with variety for different months.The monthly maximum air temperature,wind speed,sunshine and monthly mean air temperature have the highest correlation degree with spring maize water requirement from May to September.展开更多
The dynamics of high-altitude inland lakes in the Tibetan Plateau are sensitive indicators of climate change. Due to the remoteness and hard access, satellite altimetry becomes an effective approach to obtaining large...The dynamics of high-altitude inland lakes in the Tibetan Plateau are sensitive indicators of climate change. Due to the remoteness and hard access, satellite altimetry becomes an effective approach to obtaining largescale and temporally continuous information of lake-level changes. The CryoSat-2 altimetry is expected to solve the current problem that earlier radar altimeters are only practical for monitoring large water bodies, while ICESat laser altimetry is available only for the period 2003-2009. In this study, the comparison of CryoSat-2 altimetry for Namco with in situ water-level data suggests a high cor- relation coefficient of 0.71 (P 〈 0.01), with the mean error of -0.12 m and root-mean-square error of 0.18 m. Further, the combination of ICESat and CryoSat-2 altimetry data and in situ lake-level observations reveals a rapid water- level rise of 0.24 4- 0.04 m/year during 2003-2008 and then a slightly decreasing trend of -0.09 4- 0.04 m/year during 2009-2013. This study suggests that the CryoSat-2 altimetry has the potential of sustaining the fine observa- tions on Tibetan lakes, following the ICESat mission. Besides, the examination of four key climatic variables (temperature, precipitation, potential evapotranspiration, and relative humidity) during 1990-2013 indicates that the wetting climate over Namco Basin stagnated or even reversed around 2006, which may be tightly related to the slowing lake growth.展开更多
基金funded by the Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.KZCX2-YW-BR-21)National Science Foundation of China(Grant No. 41272200)
文摘Gongga Mountain, locates on the eastern edge of Tibetan Plateau of China, is the highest mountain in China except summits in Tibet. Only limited meteorological data on Gongga Mountain have been published so far. Here we present the meteorological records from two stations, Moxi Station (at 1,621.7 m above sea level (a.s.1.), 1992- 2010) and Hailuogou Station (at 2,947.8 m a.s.l., 1988-2010), on the eastern slope of Gongga Mountain. In the past two decades, the annual precipitation decreased while the annual mean temperature increased at Hailuogou Station. Both precipitation and temperature increased at Moxi Station. The precipitation variation on the eastern slope of Gongga Mountain is influenced by both East Asian Monsoon and Indian Monsoon, so that the precipitation concentrated between May and October. The temperature variation on the eastern slope of Gongga Mountain in the past two decades showed similar trends as that of the northern hemispheric and global. In the past two decades, the temperature increased o.35℃ and o.3℃/decade at Hailuogou Station and Moxi Station respectively, which was higher than the increase extents of northern hemispheric and global temperature. The most intense warming occurred at the first decade of 21St century. The winter temperature increased more at Hailuogou Station than at Moxi Station. A remarkable increase of temperature in March was observed with only a little precipitation at both high and low altitude stations.
基金supported by Natural Science Foundation of China (Grant no.40771204,Grant no. 40801006 and Grant no.40801223)
文摘Xiliaohe River watershed plays an important role in regional and national grain security.With the development of society and economy,water consumption that increased dramatically causes water shortages.Crop water requirement can provide quantitative basis for making regional irrigation scheme.In this study,spring maize water requirement is calculated by using PenmanMonteith formula and spring maize coefficient from May to September at 10 meteorological stations in Xiliaohe River watershed from 1951 to 2005.The variation trend of the spring maize water requirement during the whole growing stage,water requirement in every month,and meteorological influencing factors are obtained by using Mann-Kendall method,and the degree of grey incidence between the water requirement and meteorological influencing factors are shown.The results are the spring maize water requirement during the whole growing stages increases at half of the stations in Xiliaohe River watershed,and are remarkably affected by the water requirement in May.The monthly mean,maximum and minimum air temperature form May to September show an increasing trend in Xiliaohe River watershed in recent 55 years.The monthly mean and minimum air temperature increases notably.The relative humidity,precipitation,wind speed and sunshine show a decreasing trend with variety for different months.The monthly maximum air temperature,wind speed,sunshine and monthly mean air temperature have the highest correlation degree with spring maize water requirement from May to September.
基金supported by the National Special Basic Research Project of the Ministry of Science and Technology(2013FY111400-2,2009CB723901)the National Natural Science Foundation of China(41120114001,41125003,41071254,40971048)+3 种基金the European Space Agency(ESA AO 2605)the Knowledge Innovation Foundation Program for outstanding Young Scholar of Chinese Academy of Sciences(CAS)(KZCX2-EWQN104)supported by Open Research Fund of Key Laboratory of Tibetan Environmental Changes and Land Surface Processes in Chinese Academy of SciencesOpen Fund of State Key Laboratory of Remote Sensing Science
文摘The dynamics of high-altitude inland lakes in the Tibetan Plateau are sensitive indicators of climate change. Due to the remoteness and hard access, satellite altimetry becomes an effective approach to obtaining largescale and temporally continuous information of lake-level changes. The CryoSat-2 altimetry is expected to solve the current problem that earlier radar altimeters are only practical for monitoring large water bodies, while ICESat laser altimetry is available only for the period 2003-2009. In this study, the comparison of CryoSat-2 altimetry for Namco with in situ water-level data suggests a high cor- relation coefficient of 0.71 (P 〈 0.01), with the mean error of -0.12 m and root-mean-square error of 0.18 m. Further, the combination of ICESat and CryoSat-2 altimetry data and in situ lake-level observations reveals a rapid water- level rise of 0.24 4- 0.04 m/year during 2003-2008 and then a slightly decreasing trend of -0.09 4- 0.04 m/year during 2009-2013. This study suggests that the CryoSat-2 altimetry has the potential of sustaining the fine observa- tions on Tibetan lakes, following the ICESat mission. Besides, the examination of four key climatic variables (temperature, precipitation, potential evapotranspiration, and relative humidity) during 1990-2013 indicates that the wetting climate over Namco Basin stagnated or even reversed around 2006, which may be tightly related to the slowing lake growth.