In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution ...In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution of Oceanography dataset for the period of 1955-1998 and an approach to prediction the SCSSM onset is proposed. Correlation showes that there exists interdecadal variability of the SCSSM onset demarcated by 1970 with the largest correlation coefficient in the area west of the center of the warm pool rather than near its centers, implying certain effect from other factors involved besides ENSO. As the correlation is poor for the period before 1970, the heat content anomaly of the warm pool after 1970 is used to indicate early or late onset of the SCSSM beforehand. An ideal representative area (1°×1°) for the warm pool heat content was determined with its center at 3°N/138°E. The nearest TAO (TAO-Tropical Atmosphere Ocean-array) mooring to the center is at 2°N/137°E, and chosen to calculate the heat content for prediction. It is suggested that the TAO mooring at 2°N/137°E could be used to predict the SCSSM onset with the heat content in the upper layer, if the correlation between the SCSSM onset and the heat content of the warm pool runs like that of after 1970. On the other hand, if the situation does like the one before 1970, the representative station is determined at 13°S/74°E with relatively poor correlation, meaning that the warm pool in the western Pacific Ocean plays more important role in the SCSSM onset than the Indian Ocean.展开更多
This study investigated the connection between the Australian summer monsoon(ASM) and summer precipitation over central China. It was found that,following a weaker-than-normal ASM, the East Asian summer monsoon and we...This study investigated the connection between the Australian summer monsoon(ASM) and summer precipitation over central China. It was found that,following a weaker-than-normal ASM, the East Asian summer monsoon and western North Pacific subtropical high tend to be stronger, yielding anomalous northward moisture to be transported from the western Pacific to central China. Besides, anomalous upwelling motion emerges over 30–37.5°N, along 110°E. Consequently,significant positive summer precipitation anomalies are located over central China. Further analysis indicated that the boreal winter sea surface temperature(SST) in the Indian Ocean and South China Sea shows positive anomalies in association with a weaker-than-normal ASM. The Indian Ocean warming in boreal winter could persist into the following summer because of its own long memory, emanating a baroclinic Kelvin wave into the Pacific that triggers suppressed convection and an anomalous anticyclone. Besides, the abnormal SST signal in the South China Sea develops eastward with time because of local air-sea interaction, causing summer SST warming in the western Pacific. The SST warming can further affect East Asian atmospheric circulation and precipitation through its impact on convection.展开更多
By applying the OLR and wind data, rainfall data and the Madden and Julian Oscillation (MJO) index, the paper deals with in traseasonal oscillation features and interannual differences of the South China Sea (SCS)...By applying the OLR and wind data, rainfall data and the Madden and Julian Oscillation (MJO) index, the paper deals with in traseasonal oscillation features and interannual differences of the South China Sea (SCS) summer monsoon, distribution of its LF circulation and convection fields and rainfall, and path of summer monsoon ISO spreading, as well as impact of tropical IndoMJO on SCS summer monsoon ISO during 19792008. It is found that (1) there are three intraseasonal oscillations of the SCS summer monsoon Intraseasonal Oscillation (ISO) in summer (from May to August) in the climate normal. The SCS summer monsoon ISO goes through six phases (exclusive of weak phase) at every complete fluctuation: developing, the strongest, weakening, restraining, the weakest, and recovering. Due to tropical LC convection spreading to the east and north, the LR convection and circulation fields in the lst3rd and 4th6th phases present the antiphase in the Arabian SeaWest Pa cific latitudinal band. Its corresponding rain bands in the lst3rd and 4th6th phases als present antiphase roughly. The rain band, mainly in tropical regions in the south of 20N, moves eastward with LR convection shifting eastward, while the rain band moves northward with LR convection shifting northward in East Asia (EA) subtropical regions in the north of 20N. (2) The SCS summer monsoon ISO presents significant interannual variations in intensity. There are three stronger monsoon in traseasonal oscillations in summer in the strong SCS monsoon ISO year. The first two oscillations from the tropical Indian Ocean ISO spread northward to the Bay of Bengal first, and then to the South China Sea (SCS) along the 10-20N latitudinal band. They are strengthened there and stimulate the ISO moving to the north to form the tropical IndoISO. Finally they spread to South China (SC) by relay way in the longitudelatitude direction. Moreover, in the weaker SCS summer monsoon ISO, the oscillation weakens greatly and irregularly in intensity with the weaker ISO spreading in the longitudelatitude direction. In average conditions, the tropical Indian ISO spreads to the SCS by about 20 days (one half ISO periods). (3) MJO1 (the first modal of MJO index provided by the CPC) averaged value in the lst2nd pentads of April has the negative correlation with the SCS monsoon ISO intensity. The tropical IndoMJO is slightly stronger in the subsequent May to August when it is more ac tive in the lst2nd pentads of April, and the ISO also spreads strongly to the SCS, so that the SCS summer monsoon ISO strengthens. Conversely, the SCS summer monsoon ISO weakens. The abnormal MJO in the lst2nd pentads of April contrib utes to a certain theory basis for us to predict the subsequent SCS summer monsoon ISO intensity and analyze the related re gions' abnormal rainfall.展开更多
基金Supported by the National Basic Research Program of China (973 Programm) (No.2007CB411802 and 2006CB403603)
文摘In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution of Oceanography dataset for the period of 1955-1998 and an approach to prediction the SCSSM onset is proposed. Correlation showes that there exists interdecadal variability of the SCSSM onset demarcated by 1970 with the largest correlation coefficient in the area west of the center of the warm pool rather than near its centers, implying certain effect from other factors involved besides ENSO. As the correlation is poor for the period before 1970, the heat content anomaly of the warm pool after 1970 is used to indicate early or late onset of the SCSSM beforehand. An ideal representative area (1°×1°) for the warm pool heat content was determined with its center at 3°N/138°E. The nearest TAO (TAO-Tropical Atmosphere Ocean-array) mooring to the center is at 2°N/137°E, and chosen to calculate the heat content for prediction. It is suggested that the TAO mooring at 2°N/137°E could be used to predict the SCSSM onset with the heat content in the upper layer, if the correlation between the SCSSM onset and the heat content of the warm pool runs like that of after 1970. On the other hand, if the situation does like the one before 1970, the representative station is determined at 13°S/74°E with relatively poor correlation, meaning that the warm pool in the western Pacific Ocean plays more important role in the SCSSM onset than the Indian Ocean.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41421004 and 41130103)the Special Fund for Public Welfare Industry (Mete orology) (Grant No. GYHY201306026)
文摘This study investigated the connection between the Australian summer monsoon(ASM) and summer precipitation over central China. It was found that,following a weaker-than-normal ASM, the East Asian summer monsoon and western North Pacific subtropical high tend to be stronger, yielding anomalous northward moisture to be transported from the western Pacific to central China. Besides, anomalous upwelling motion emerges over 30–37.5°N, along 110°E. Consequently,significant positive summer precipitation anomalies are located over central China. Further analysis indicated that the boreal winter sea surface temperature(SST) in the Indian Ocean and South China Sea shows positive anomalies in association with a weaker-than-normal ASM. The Indian Ocean warming in boreal winter could persist into the following summer because of its own long memory, emanating a baroclinic Kelvin wave into the Pacific that triggers suppressed convection and an anomalous anticyclone. Besides, the abnormal SST signal in the South China Sea develops eastward with time because of local air-sea interaction, causing summer SST warming in the western Pacific. The SST warming can further affect East Asian atmospheric circulation and precipitation through its impact on convection.
基金supported by Special Fund for the Meteorological Scientific Research of Public Sector(Grant No.GYHY200806004)National Basic Research Program of China (Grant No.2012CB956001)
文摘By applying the OLR and wind data, rainfall data and the Madden and Julian Oscillation (MJO) index, the paper deals with in traseasonal oscillation features and interannual differences of the South China Sea (SCS) summer monsoon, distribution of its LF circulation and convection fields and rainfall, and path of summer monsoon ISO spreading, as well as impact of tropical IndoMJO on SCS summer monsoon ISO during 19792008. It is found that (1) there are three intraseasonal oscillations of the SCS summer monsoon Intraseasonal Oscillation (ISO) in summer (from May to August) in the climate normal. The SCS summer monsoon ISO goes through six phases (exclusive of weak phase) at every complete fluctuation: developing, the strongest, weakening, restraining, the weakest, and recovering. Due to tropical LC convection spreading to the east and north, the LR convection and circulation fields in the lst3rd and 4th6th phases present the antiphase in the Arabian SeaWest Pa cific latitudinal band. Its corresponding rain bands in the lst3rd and 4th6th phases als present antiphase roughly. The rain band, mainly in tropical regions in the south of 20N, moves eastward with LR convection shifting eastward, while the rain band moves northward with LR convection shifting northward in East Asia (EA) subtropical regions in the north of 20N. (2) The SCS summer monsoon ISO presents significant interannual variations in intensity. There are three stronger monsoon in traseasonal oscillations in summer in the strong SCS monsoon ISO year. The first two oscillations from the tropical Indian Ocean ISO spread northward to the Bay of Bengal first, and then to the South China Sea (SCS) along the 10-20N latitudinal band. They are strengthened there and stimulate the ISO moving to the north to form the tropical IndoISO. Finally they spread to South China (SC) by relay way in the longitudelatitude direction. Moreover, in the weaker SCS summer monsoon ISO, the oscillation weakens greatly and irregularly in intensity with the weaker ISO spreading in the longitudelatitude direction. In average conditions, the tropical Indian ISO spreads to the SCS by about 20 days (one half ISO periods). (3) MJO1 (the first modal of MJO index provided by the CPC) averaged value in the lst2nd pentads of April has the negative correlation with the SCS monsoon ISO intensity. The tropical IndoMJO is slightly stronger in the subsequent May to August when it is more ac tive in the lst2nd pentads of April, and the ISO also spreads strongly to the SCS, so that the SCS summer monsoon ISO strengthens. Conversely, the SCS summer monsoon ISO weakens. The abnormal MJO in the lst2nd pentads of April contrib utes to a certain theory basis for us to predict the subsequent SCS summer monsoon ISO intensity and analyze the related re gions' abnormal rainfall.